![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Smoothness of the law of some one-dimensional jumping S.D.E.s with non-constant rate of jump
|
Nicolas Fournier, Université Paris Est |
Abstract
We consider a one-dimensional
jumping Markov process,
solving a Poisson-driven stochastic differential equation.
We prove that the law of this process admits a smooth density for all
positive times,
under some regularity and non-degeneracy assumptions on the coefficients
of the S.D.E.
To our knowledge, our result is the first one including the
important case of a non-constant rate of jump.
The main difficulty is that in such a case, the process is not smooth
as a function of its initial condition.
This seems to make impossible the use of
Malliavin calculus techniques.
To overcome this problem, we introduce a new method, in which
the propagation of the smoothness of the density is obtained
by analytic arguments.
|
Full text: PDF
Pages: 135-156
Published on: January 30, 2008
|
Bibliography
-
V. Bally. Malliavin calculus for locally smooth laws
and applications to diffusion processes with jumps. Preprint (2007).
-
K. Bichteler, J.B. Gravereaux, J. Jacod. Malliavin
calculus for processes with jumps. Stochastics Monographs, 2.
Gordon and Breach Science Publishers, New York (1987).
Math. Review 90h:60056
-
K. Bichteler, J. Jacod. Calcul de Malliavin pour les
diffusions avec sauts: existence d'une densité dans le cas
unidimensionel.
Séminaire de Probabilités XVII, L.N.M. 986, p 132-157, Springer,
(1983).
Math. Review 86f:60070
-
J.M. Bismut. Calcul des variations stochastiques
et processus de sauts.
Z. Wahrsch. Verw. Gebiete 63, no. 2, 147-235 (1983).
Math. Review 85a:60077
-
L. Denis.
A criterion of density for solutions of Poisson-driven SDEs.
Probability Theory and Related Fields 118, no. 3, 406-426 (2000).
Math. Review 2002a:60091
-
N. Fournier. Existence and regularity study for
two-dimensional Kac equation without cutoff by a probabilistic approach.
Ann. Appl. Probab. 10 no. 2, 434--462 (2000).
Math. Review 2001j:60105
-
N. Fournier. Jumping SDEs: absolute continuity using monotonicity.
Stochastic Process. Appl., 98 (2), pp 317-330 (2002).
Math. Review 2003g:60099
-
N. Fournier, J.S. Giet.
On small particles in coagulation-fragmentation equations.
J. Statist. Phys., 111 (5/6), pp 1299-1329 (2003).
Math. Review 2005a:82076
-
C. Graham, S. Méléard. Existence and regularity of a
solution to a Kac equation without cutoff using Malliavin
Calculus. Commun. Math. Phys., 205, pp 551-569 (1999).
Math. Review 2001c:60091
- A.M. Kulik. Malliavin calculus for Levy processes
with arbitrary Levy measures. Theory Probab. Math. Statist.
No. 72, 75--92 (2006).
Math. Review 2006e:60076
- A.M. Kulik. Stochastic calculus of variations for general
Levy processes and its applications to jump type SDEs with nondegenerated
drift. Preprint (2006).
- R. Léandre. Régularité de processus de sauts
dégénérés. Ann. Inst. H. Poincaré Probab. Statist. 21,
no. 2, 125--146 (1985).
Math. Review 87f:60112
- I. Nourdin, T. Simon. On the absolute continuity of
Levy processes with drift. Annals of Probability 34 (3), 1035-1051 (2006).
Math. Review 2007j:60073
- J. Picard. On the existence of smooth densities for jump processes.
Probability Theory and Related Fields 105, no. 4, 481-511 (1996).
Math. Review 97h:60056
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|