![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On the Innovations Conjecture of Nonlinear Filtering with Dependent Data
|
Andrew Heunis, University of Waterloo Vladimir Lucic, Barclays Capital |
Abstract
We establish the innovations conjecture
for a nonlinear filtering problem
in which the signal to be estimated is conditioned
by the observations.
The approach uses only elementary stochastic analysis,
together with a variant due to J.M.C. Clark of
a theorem of Yamada and Watanabe on pathwise-uniqueness
and strong solutions of stochastic differential
equations.
|
Full text: PDF
Pages: 2190-2216
Published on: December 8, 2008
|
Bibliography
-
D.F. Allinger and S.K. Mitter,
New results on the innovations problem of non-linear filtering,
Stochastics,
4, (1981), 339--348.
0609692
-
V.E. Benes,
Nonexistence of strong nonanticipating solutions to stochastic DEs:
implications for functional DEs, filtering and control,
Stoch. Proc. Appl.,
5, (1977), 243--263.
0458588
-
A.G. Bhatt and R.L. Karandikar.
Robustness of the nonlinear filter: the correlated case.
Stoch. Proc. Appl.
97, (2002), 41--58.
1870719
-
Y.S.Chow and H. Teicher,
Probability Theory: Independence, Interchangeability, Martingales,
2nd ed., Springer-Verlag, New York, (1988).
0953964
-
J.M.C. Clark,
Conditions for the one-to-one correspondence between an observation
process and its innovation,
Technical Report, Centre for Computing and Automation,
Imperial College, London, (1969).
-
J.M.C. Clark,
A remark on a strong solution corollary of Watanabe and Yamada.
In Recent Advances in Communication and Control Theory
(volume in honor of A.V. Balakrishnan; R.E. Kalman, G.I. Marchuk,
A. Ruperti and A.J. Viterbi, eds.)
Optimization Software Inc., New York, (1987), 155--158.
-
R.J. Elliott,
Stochastic Calculus and Applications,
Springer-Verlag, New York, (1982).
0678919
-
S.N. Ethier and T.G. Kurtz,
Markov Processes: Characterization and Convergence.
J. Wiley and Sons, New York, (1986).
0838085
-
M. Fujisaki, G. Kallianpur and H. Kunita,
Stochastic differential equations for the non-linear filtering problem.
Osaka J. Math.,
9, (1972), 19--40.
0336801
-
N. Ikeda and S. Watanabe,
Stochastic Differential Equations and Diffusion Processes,
North-Holland, Amsterdam (Kodansha Ltd. Tokyo), (1981).
0637061
-
G. Kallianpur,
Stochastic Filtering Theory,
Springer-Verlag, New York, (1980).
0583435
-
R.L. Karandikar,
On the Métivier-Pellaumail inequality, Emery topology and pathwise formulae in stochastic calculus.
Sankhyā Ser. A,
51, (1989), 121--143.
1065565
-
R.L. Karandikar,
On pathwise stochastic integration,
Stoch. Proc. Appl.,
57, (1995), 11--18.
1327950
-
I. Karatzas and S.E. Shreve,
Brownian Motion and Stochastic Calculus,
Springer-Verlag, New York (1991).
1121940
-
N.V. Krylov,
On the equivalence of sigma-algebras in the filtering problem
of diffusion processes,
Theor. Probab. Appl.
24, (1979), 772--781.
0550532
-
N.V. Krylov and B.L. Rozovskii,
On conditional distributions of diffusion processes,
Math. USSR Izvestia,
12, (1978),336--356.
0517867
-
T.G. Kurtz and D.L. Ocone,
Unique characterization of conditional distributions in nonlinear filtering.
Ann. Prob.,
16, (1988), 80--107.
0920257
-
V.M. Lucic and A.J. Heunis,
On uniqueness of solutions for the stochastic differential
equations of nonlinear filtering,
Ann. Appl. Prob.,
11, (2001), 182--209.
1825463
-
P.A. Meyer,
Sur un problème de filtration,
Séminaire de Probabilités VII,
Lecture Notes in Mathematics no. 321,
Springer-Verlag, Berlin, (1973), 223--247.
0378084
-
D. Revuz and M. Yor,
Continuous Martingales and Brownian Motion,
2nd ed., Springer-Verlag, Berlin, (1994).
1303781
-
L.C.G Rogers and D. Williams,
Diffusions, Markov Processes and Martingales: Volume 1 Foundations,
2nd Ed. Cambridge University Press, Cambridge, (2000).
1796539
-
L.C.G Rogers and D. Williams,
Diffusions, Markov Processes and Martingales: Volume 2 Itô Calculus,
2nd Ed. Cambridge University Press, Cambridge, (2000).
1780932
-
D.W. Stroock and S.R.S. Varadhan,
Multidimensional Diffusion Processes, Springer-Verlag, New York, (1979).
0532498
-
J. Szpirglas,
Sur l'équivalence d'équations différentielles
stochastiques á valeurs mesures intervenant dans le
filtrage markovien non linéaire,
Ann. Inst. Henri Poincaré,
XIV, (1978), 33--59.
0495059
-
B.S. Tsirel'son,
An example of a stochastic differential equation having no strong
solution,
Theor. Probab. Appl.,
20, (1975), 416--418.
-
E. Wong and B. Hajek,
Stochastic Processes in Engineering Systems,
Springer-Verlag, New York, (1985).
0787046
-
T. Yamada and S. Watanabe,
On the uniqueness of solutions of stochastic differential equations,
J. Math. Kyoto Univ.,
11, (1971), 155--167.
0278420
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|