|
|
|
| | | | | |
|
|
|
|
|
On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients
|
Pierre Etoré, IECN, UHP Nancy I, France |
Abstract
In this paper, we provide a scheme for simulating
one-dimensional processes generated by divergence or non-divergence form operators with discontinuous coefficients.
We use a space bijection to transform such a process in another one that behaves locally like a Skew Brownian motion.
Indeed the behavior of the Skew Brownian motion can easily be approached by an asymmetric random walk.
|
Full text: PDF
Pages: 249-275
Published on: March 15, 2006
|
Bibliography
-
R.F. Bass and Z.-Q. Chen.
One-dimensional Stochastic Differential Equations
with Singular and Degenerate Coefficients.
Sankhya 67 (2005), 19-45.
Math. Review number not available.
-
L. Breiman. Probability.
Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, Ont.
(1968), ix+421 pp.
Math. Review MR0229267
-
H. Brézis. Analyse fonctionnelle.
Masson. (1983), xiv+234 pp.
Math. Review 85a:46001
-
M. Decamps, A. De Schepper and M. Goovaerts.
Applications of delta-function pertubation to the pricing of
derivative securities.
Physica A 342:3-4 (2004), 677-692.
Math. Review number not available.
-
S.N. Ethier and T.G. Kurtz. Markov processes.
Characterization and convergence. Wiley Series in Probability and Mathematical Statistics:
Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York. (1986),
x+534pp.
Math. Review 88a:60130
-
J.M. Harrison and L.A. Shepp.
On skew Brownian Motion.
The Annals of Probability 9 (1981), 309-313.
Math. Review 82j:60144
-
K. It and H.P. McKean.
Diffusion Processes and Their Sample Paths.
Springer, Berlin. (1974), xv+321 pp.
Math. Review MR0345224
-
P.E. Kloeden and E. Platen.
Numerical Solution of Stochastic Differential Equations.
Springer, Berlin (1992), xxxvi+632 pp.
Math. Review 94b:60069
-
O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva.
Linear and Quasilinear Equations of Parabolic Type.
Translations of Mathematical Monographs, American Mathematical Society.
23
(1968), xi+648 pp.
Math. Review MR0241822
-
O.A. Ladyzenskaja, V.J. Rivkind and N.N. Ural'ceva.
The classical solvability of diffraction problems.
Trudy Mat. Inst. Steklov 92 (1966), 116-146.
Math. Review MR0211050
-
A. Lejay.
Méthodes probabilistes pour l'homogénéisation des opérateurs sous forme divergence:
cas linéaires et semi-linéaires.
PhD thesis, Université de Provence, Marseille, France, 2000.
-
A. Lejay and M. Martinez.
A scheme for simulating one-dimensional diffusion
processes with discontinuous coefficients.
Preprint submitted to The Annals of Applied Probability. (2006).
-
J.F. Le Gall.
One-dimensional stochastic differential
equations involving the local time of the unknown process.
Springer, Stochastic Analysis and Applications, Lect. Notes in Math. 1095 (1985)
51-82.
Math. Review 86g:60071
-
M. Martinez.
Interprtations probabilistes d'oprateurs sous forme divergence et analyse de mthodes
numriques probabilistes associes.
PhD thesis, Universit de Provence, Marseille, France, 2004.
-
M. Martinez and D. Talay.
Discrétisation d'équations différentielles stochastiques unidimensionnelles
à générateur sous forme divergence avec coefficient discontinu.
C.R. Acad. Sci. Paris 342:1 (2006), 51-56.
Math. Review number not available.
-
D. Revuz and M. Yor.
Continuous Martingale and Brownian Motion.
Springer, Heidelberg (1991), x+533 pp.
Math. Review 92d:60053
-
D. W. Stroock.
Aronson's Estimate for Elliptic Operators in Divergence Form.
Springer , Lecture Notes in Mathematics, Seminaire de Probabilités XXII
1321 (1982), 316-347.
Math. Review number not available.
-
J.B. Walsh.
A Diffusion with a Discontinuous Local Time.
Société Mathématique de France, Astérisque 52-53
(1978), 37-45.
Math. Review number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|