![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Transition Density Asymptotics for Some Diffusion Processes with Multi-Fractal Structures
|
Martin T. Barlow, University of British Columbia Takashi Kumagai, Kyoto University |
Abstract
We study the asymptotics as $t to 0$ of the transition density
of a class of $mu$-symmetric diffusions in the case when the measure
$mu$ has a multi-fractal structure. These diffusions include
singular time changes of Brownian motion on the unit cube.
|
Full text: PDF
Pages: 1-23
Published on: March 16, 2001
|
Bibliography
-
Barlow, M. T. (1998), Diffusions on fractals,
Lectures on Probability Theory and Statistics:
Ecole d'Eté de Probabilités de Saint-Flour XXV, Springer, Berlin Heidelberg New York.
Math. Review 2000a:60148
-
Barlow, M. T. and Bass, R. F. (1989),
The construction of Brownian motion on the Sierpinski carpet,
Ann. Inst. H. Poincaré 25, 225-257.
Math. Review 91d:60183
-
Barlow, M. T. and Bass, R. F. (1990),
Local times for Brownian motion on the Sierpinski carpet,
Probab. Theory Relat. Fields 85, 91-104.
Math. Review 91j:60129
-
Barlow, M. T. and Bass, R. F. (1992),
Transition densities for Brownian motion on the Sierpinski carpet,
Probab. Theory Relat. Fields 91, 307-330.
Math. Review 93k:60203
-
Barlow, M. T. and Bass, R. F. (1999),
Brownian motion and harmonic analysis on Sierpinski carpets,
Canad. J. Math. 51, 673-744.
Math. Review 2000i:60083
-
Barlow, M. T., Bass, R. F. and Burdzy, K. (1997),
Positivity of Brownian transition densities,
Elect. Comm. in Probab. 2, 43-51.
Math. Review 99e:60166
-
Barlow, M. T. and Hambly, B. M. (1997),
Transition density estimates for Brownian motion on
scale irregular Sierpinski gasket,
Ann. Inst. H. Poincaré 33, 531-557.
Math. Review 98k:60137
-
Barlow, M. T. and Perkins, E. A. (1988),
Brownian motion on the Sierpinski gasket,
Probab. Theory Relat. Fields 79, 543-624.
Math. Review 89g:60241
-
Fukushima, M., Oshima, Y. and Takeda, M. (1994),
Dirichlet forms and symmetric Markov processes,
de Gruyter, Berlin.
Math. Review 96f:60126
-
Fujita, T. (1990),
Some asymptotic estimates of transition probability
densities for generalized diffusion processes with self-similar speed
measures,
Publ. Res. Inst. Math. Sci. 26, 819-840.
Math. Review 92f:60134
-
Hambly, B. M. and Jones, O. D.,
Asymptotically one-dimensional diffusion on the Sierpinski gasket
and multi-type branching processes with varying environment, 1998
(preprint) Math. Review number not available.
-
Hambly, B. M.,
Kigami, J. and Kumagai, T. (2002),
Multifractal formalisms for
the local spectral and walk dimensions,
Maths. Proc. Cam. Phil. Soc.,
to appear.
Math. Review number not available.
-
Hambly, B. M. and Kumagai, T. (1999),
Transition density estimates for diffusions on post critically
finite self-similar fractals,
Proc. London Math. Soc. 78, 431-458.
Math. Review 99m:60118
-
Hambly, B. M., Kumagai, T., Kusuoka, S. and Zhou, X. Y. (2000),
Transition density estimates for diffusion processes
on homogeneous random Sierpinski carpets,
J. Math. Soc. Japan 52, 373-408.
Math. Review 2001e:60158
-
Itô, K. and McKean, Jr. H. P. (1974),
Diffusion processes and thier sample paths (Second printing),
Springer, Berlin.
Math. Review 33 #8031
-
Kigami, J. (1993),
Harmonic calculus on P.C.F. self-similar sets,
Trans. Amer. Math. Soc. 335, 721-755.
Math. Review 93d:39008
-
Kigami, J. (2000),
Markov property of Kusuoka-Zhou's Dirichlet forms on
self-similar sets,
J. Math. Sci. Univ. Tokyo 7, 27-33.
Math. Review 1 749 979
-
Kigami, J. (2001),
Analysis on fractals,
Cambridge Univ. Press, to appear.
Math. Review number not available.
-
Kigami, J. and Lapidus, M. L. (1993),
Weyl's spectral problem for the spectral distribution of
Laplacians on P.C.F. self-similar fractals,
Comm. Math. Phys. 158, 93-125.
Math. Review 94m:58225
-
Kumagai, T. (1993),
Regularity, closedness and spectral dimensions of the Dirichlet
forms on P.C.F. self-similar sets,
J. Math. Kyoto Univ. 33, 765-786.
Math. Review 94i:28006
-
Kusuoka, S. and Zhou, X. Y. (1992),
Dirichlet forms on fractals: Poincaré constant and resistance,
Probab. Theory Relat. Fields 93, 169-196.
Math. Review 94e:60069
-
Landkof, N. S. (1972),
Foundations of Modern Potential Theory,
Springer, New York-Heidelberg.
Math. Review 50 #2520
-
Metz, V. (1996),
Renormalization contracts on nested frcatals,
J. Reine Angew. Math. 480, 161-175.
Math. Review 98b:31007
-
Osada, H. (2001),
A family of diffusion processes on Sierpinski carpets,
Probab. Theory Relat. Fields 119, 275-310.
Math. Review 1 818 249
-
Sabot, C. (1997),
Existence and uniqueness of diffusions on finitely ramified
self-similar fractals,
Ann. Sci. Ecole Norm. Sup. 30, 605-673.
Math. Review 98h:60118
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|