![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Uniformly Accurate Quantile Bounds Via The Truncated Moment Generating Function: The Symmetric Case
|
Michael J Klass, University of California Departments of Mathematics and Statistics Berkeley, CA Krzysztof Nowicki, Lund University Department of Statistics Box 743 S-220 07 Lund, Sweden |
Abstract
Let X1, X2,... be independent and symmetric random variables
such that Sn=X1+...+Xn converges to a finite valued random variable S a.s.
and let (which is finite a.s.).
We construct upper and lower bounds for sy and sy*,
the upper 1/y-th quantile of Sy and S*, respectively.
Our approximations rely on an explicitly computable quantity
qy
for which we prove that0.5 qy/2<sy*<2 q2y and 0.5 q0.25 y(1+√1-8/y) <sy <2 q2y. | The RHS's hold for y ≥2 and the LHS's for y ≥ 94 and y ≥97, respectively. Although our results are derived primarily for symmetric
random variables, they apply to non-negative variates and extend to an absolute
value of a sum of independent but otherwise arbitrary random variables.
|
Full text: PDF
Pages: 1276-1298
Published on: October 16, 2007
|
Bibliography
- H. Cramer, On a new limit in theory of probability, in Colloquium on the Theory of Probability, (1938), Hermann, Paris. Review number not available.
- F. Esscher, On the probability function in the collective theory of risk, Skand. Aktuarietidskr. 15 (1932), 175---195. Review number not available.
- Hahn, Marjorie G.; Klass, Michael J. Uniform local probability approximations: improvements on Berry-Esseen. Ann. Probab. 23 (1995), no. 1, 446--463. MR1330778 (96d:60069)
- Hahn, Marjorie G.; Klass, Michael J. Approximation of partial sums of arbitrary i.i.d. random variables and the precision of the usual exponential upper bound. Ann. Probab. 25 (1997), no. 3, 1451--1470. MR1457626 (99c:62039)
- Fuk, D. H.; Nagaev, S. V. Probabilistic inequalities for sums of independent random variables.(Russian) Teor. Verojatnost. i Primenen. 16 (1971), 660--675. MR0293695 (45 #2772)
- Hitczenko, Pawel; Montgomery-Smith, Stephen. A note on sums of independent random variables. Advances in stochastic inequalities (Atlanta, GA, 1997), 69--73, Contemp. Math., 234, Amer. Math. Soc., Providence, RI, 1999. MR1694763 (2000d:60080)
- Hitczenko, Pawel; Montgomery-Smith, Stephen. Measuring the magnitude of sums of independent random variables. Ann. Probab. 29 (2001), no. 1, 447--466. MR1825159 (2002b:60077)
- Jain, Naresh C.; Pruitt, William E. Lower tail probability estimates for subordinators and nondecreasing random walks. Ann. Probab. 15 (1987), no. 1, 75--101. MR0877591 (88m:60075)
- Klass, M. J. Toward a universal law of the iterated logarithm. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 2, 165--178. MR0415742 (54 #3822)
- Klass, Michael J.; Nowicki, Krzysztof. An improvement of Hoffmann-Jørgensen's inequality. Ann. Probab. 28 (2000), no. 2, 851--862. MR1782275 (2001h:60029)
- Klass, Michael J.; Nowicki, Krzysztof. An optimal bound on the tail distribution of the number of recurrences of an event in product spaces. Probab. Theory Related Fields 126 (2003), no. 1, 51--60. MR1981632 (2004f:60038)
- Kolmogoroff, A. Über das Gesetz des iterierten Logarithmus.(German) Math. Ann. 101 (1929), no. 1, 126--135. MR1512520
- Latal a, Rafal. Estimation of moments of sums of independent real random variables. Ann. Probab. 25 (1997), no. 3, 1502--1513. MR1457628 (98h:60021)
- Nagaev, S. V. Some limit theorems for large deviations.(Russian) Teor. Verojatnost. i Primenen 10 1965 231--254. MR0185644 (32 #3106)
- Prokhorov, Yu. V. An extremal problem in probability theory. Theor. Probability Appl. 4 1959 201--203. MR0121857 (22 #12587)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|