![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On rough differential equations
|
Antoine Lejay, Institut Elie Cartan, Nancy |
Abstract
We prove that the Itô map, that is the map
that gives the solution of a differential
equation controlled by a rough path of finite p-variation
with p in [2,3)
is locally Lipschitz continuous in all its arguments and
we give some sufficient conditions for global existence
for non-bounded vector fields.
|
Full text: PDF
Pages: 341-364
Published on: February 2, 2009
|
Bibliography
-
S. Aida.
Notes on proofs of continuity theorem in rough path analysis.
Preprint of Osaka University (2006).
Math. Review number not available.
-
M. Caruana.
Itô-Stratonovich equations with C1+ε
coefficients have rough path solutions almost surely.
Preprint, 2005.
Math. Review number not available.
-
L. Coutin, P. Friz and N. Victoir.
Good rough path sequences and applications to anticipating &
fractional stochastic calculus.
Ann. Probab., 35:3 (2007) 1171-1193.
Math. Review 2008e:60171.
-
L. Coutin and A. Lejay.
Semi-martingales and rough paths theory.
Electron. J. Probab., 10:23 (2005), 761-785.
Math. Review 2006i:60042.
-
A.M. Davie.
Differential equations driven by rough signals: an approach via
discrete approximation.
Appl. Math. Res. Express. AMRX, 2 (2007),
Art. ID abm009, 40.
Math. Review 2387018.
-
P. Friz and N. Victoir.
Euler estimates of rough differential equations.
J. Differential Equations, 244:2 (2008), 388-412.
Math. Review 2376201.
-
P. Friz and N. Victoir.
Multidimensional stochastic processes as rough paths. Theory and
applications, Cambrigde University Press, 2009.
Math. Review number not available.
-
Y. Inahama and H. Kawabi.
Asymptotic expansions for the Laplace approximations for
Itô functionals of Brownian rough paths.
J. Funct. Anal., 243:1 (2007), 270-322.
Math. Review 2008b:60130.
-
Y. Inahama.
A stochastic Taylor-like expansion in the rough path
theory.
Preprint from Tokyo Institute of Technology, no. 02-07, 2007.
Math. Review number not available.
-
A. Lejay and N. Victoir.
On (p,q)-rough paths.
J. Differential Equations,
225:1 (2006), 103-133.
Math. Review 2007i:60069.
-
A. Lejay.
An introduction to rough paths,
Séminaire de probabilités, XXXVII, 1-59,
Lecture Notes in Mathematics 1832, Springer-Verlag, 2003.
Math. Review 2005e:60120.
-
A. Lejay.
Yet another introduction to rough paths.
To appear in Séminaire de probabilités,
Lecture Notes in Mathematics, Springer-Verlag, 2009.
Math. Review number not available.
-
A. Lejay.
Stochastic differential equations driven by processes generated
by divergence form operators II: convergence results.
ESAIM Probab. Stat., 12 (2008), 387-411.
Math. Review 2437716.
-
T. Lyons, M. Caruana and T. Lévy.
Differential equations driven by rough paths,
École d'été des probabilités de saint-flour XXXIV, 2004 (J. Picard ed.), Lecture Notes in Mathematics 1908, Springer-Verlag, 2007.
Math. Review 2314753.
-
T. Lyons and Z. Qian.
Flow of diffeomorphisms induced by a geometric multiplicative
functional.
Probab. Theory Related Fields, 112:1 (1998), 91-119.
Math. Review 99k:60153.
-
T. Lyons and Z. Qian.
System control and rough paths.
Oxford Mathematical Monographs, Oxford University Press, 2002.
Math. Review 2005f:93001.
-
T.J. Lyons.
Differential equations driven by rough signals.
Rev. Mat. Iberoamericana, 14:2 (1998), 215-310.
Math. Review 2000c:60089.
-
G. Pagès and A. Sellami.
Convergence of multi-dimensional quantized SDE's.
Preprint of University Paris 6, 2008. Available
at arXiv:0801.0726.
Math. Review number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|