|
|
|
| | | | | |
|
|
|
|
|
Hypercontractivity and Comparison of Moments of Iterated Maxima and Minima of Independent Random Variables
|
Pawel Hitczenko, North Carolina State University Stanislaw Kwapien, Warsaw University Wenbo V. Li, University of Delaware Gideon Schechtman, The Weizmann Institute of Science Thomas Schlumprecht, Texas A&M University Joel Zinn, Texas A&M University |
Abstract
We provide necessary and sufficient conditions for hypercontractivity of
the minima of nonnegative, i.i.d. random variables and of both
the maxima of minima and the minima of maxima for such r.v.'s. It turns out
that the idea of hypercontractivity for minima is closely related to small
ball probabilities and Gaussian correlation inequalities.
|
Full text: PDF
Pages: 1-26
Published on: January 7, 1998
|
Bibliography
-
Anderson, T.W. (1955). The integral of a symmetric unimodal function over a
symmetric convex set and some probability inequalities. {it Proc. Amer.
Math. Soc.} {bf 6}, 170--176.
Math Review link
-
Asmar, N.~H., Montgomery-Smith, S.J. (1994). On the distribution of Sidon
series. {it Ark. Mat.} {bf 31}, 13--26.
Math Review link
-
Beckner, W. (1975). Inequalities in Fourier Analysis. {it Ann. of Math.}
{bf 102}, 159--182.
Math Review link
-
Bingham, N.~H., Goldie, C.~M. and Teugels, J.~L. (1987). Regular variation.
{it Cambridge University Press,} 491 pp.
Math Review link
-
Bonami, A. (1970). Etude des coefficients de Fourier des fonctiones
de $L_p(G)$.
{it Ann. de l'Institut Fourier} {bf 20}, 335--402.
Math Review link
-
Borell, C. (1979). On the integrability of Banach space valued Walsh
polynomials. $;;$
{it S'eminaire de Probabilit'e XIII, Lecture in Math.} {bf 721}, 1--3.
Math Review link
-
Borell, C. (1984). On polynomial chaos and itegrability. {it Probability and
Mathematical Statistics} {bf 3}, 191--203.
Math Review link
-
de~la~Pe~na, V., Montgomery-Smith, S.J. and Szulga, J. (1994). Contraction
and decoupling inequalities for multilinear forms and U-statistics. {it
Ann. of Prob.} {bf 22}, 1745--1765.
Math Review link
-
Gordon, Y. (1987).
Elliptically contoured distributions. {it Prob. Theory Rel. Fields} {bf
76}, 429--438.
Math Review link
-
Gross, L. (1975). Logarithmic Sobolev inequalities. {it Amer. J. Math}
{bf 97},
1061--1083.
Math Review link
-
Khatri, C.G. (1967). On certain inequalities for normal distributions and
their applications to simultaneous confidence bounds. {it Ann. Math.
Statist.} {bf 38}, 1853--1867.
Math Review link
-
Krakowiak, W. and Szulga, J. (1988). Hypercontraction principle and
random multilinear forms. {it Probability Theory and Related Fields}
{bf 77}, 325--342.
Math Review link
-
Kuelbs, J., Li, W.V. and Shao, Q. (1995). Small ball estimates for
fractional Brownian motion under H"older norm and Chung's functional LIL.
{it J. Theor. Prob.} {bf 8}, 361-386.
Math Review link
-
Ledoux, M. and Talagrand, M. (1991).
{it Probability on Banach Spaces}, Springer, Berlin.
Math Review link
-
Lewandowski, M., Ryznar, M. and .Zak, T. (1992). Stable measure of a small
ball,
{it Proc. Amer. Math. Soc.}, {bf 115}, 489--494.
Math Review link
-
Li, W.V. and Shao, Q. (1996).
A note on the existence of the small ball constant for sup-norm for fractional
Brownian motions assuming the correlation conjecture. Preprint.
-
Marcus, M.~B. and Shepp, L. (1972). Sample behavior of Gaussian processes.
{it Proc. of the Sixth Berkeley Symposium on Math. Statist. and Prob.}
{bf vol. 2}, 423--421.
Math Review link
-
Nelson, E. (1966). A quartic interaction in two dimensions,
in {it Mathematical
Theory of Elementary Particles}, M.I.T. Press, 69--73.
Math Review link
-
Pitt, L.D. (1977).
A Gaussian correlation inequality for symmetric convex sets. {it Ann.
of Prob.} {bf 5}, 470--474.
Math Review link
-
Rychlik, E. (1993). Some necessary and sufficient conditions of $(p,q)$
hypercontractivity. Preprint.
-
Schechtman, G., Schlumprecht, T. and Zinn, J. (1995). On the Gaussian
measure of the intersection of symmetric, convex sets. Preprint.
-
Sv id' ak, Z. (1967) Rectangular confidence regions for the means of
multivariate normal distributions. {it J. Amer. Statist. Assoc.} {bf 62},
626--633.
Math Review link
-
Sv id' ak, Z. (1968). On multivariate normal probabilities of rectangles:
their dependence on correlations. {it Ann. Math. Statist.} {bf 39},
1425--1434.
Math Review link
-
Slepian, D. (1962). The one-sided barrier problem for Gaussian noise. {it
Bell System Tech. J. 41}, 463--501.
Math Review not available.
-
Szarek, S. (1991).
Conditional numbers of random matrices.
{it J. Complexity}, {bf 7}, 131--149.
Math Review link
-
Szarek, S. and Werner, E. (1995). Personal Communication.
-
Szulga, J. (1990). A note on hypercontractivity of stable random variables.
{it Ann. of Prob.} {bf 18}, 1746--1758.
Math Review link
-
Talagrand, M. (1994).
The small ball problem for the Brownian sheet. {it Ann. of Probab.} {bf
22}, 1331--1354.
Math Review link
-
Tong, Y. L. (1980).
{it Probability Inequalities in Multivariate Distributions}, Academic
Press, New York.
Math Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|