![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Competing Species Superprocesses with Infinite Variance
|
Klaus Fleischmann, Weierstrass Institute for Applied Analysis and Stochastics Leonid Mytnik, Technion - Israel Institute of Technology |
Abstract
We study pairs of interacting measure-valued branching processes (superprocesses) with alpha-stable migration and (1+beta)-branching mechanism. The interaction is realized via some killing procedure. The collision local time for such processes is constructed as a limit of approximating collision local times. For certain dimensions this convergence holds uniformly over all pairs of such interacting superprocesses. We use this uniformity to prove existence of a solution to a competing species martingale problem under a natural dimension restriction. The competing species model describes the evolution of two populations where individuals of different types may kill each other if they collide. In the case of Brownian migration and finite variance branching, the model was introduced by Evans and Perkins (1994). The fact that now the branching mechanism does not have finite variance requires the development of new methods for handling the collision local time which we believe are of some independent interest.
|
Full text: PDF
Pages: 1 - 59
Published on: May 22, 2003
|
Bibliography
- M.T. Barlow, S.N. Evans, and E.A. Perkins.
Collision local times and measure-valued processes.
Canad. J. Math., 43(5):897-938, 1991.
Math. Review 93a:60119
- D.A. Dawson.
Geostochastic calculus.
Canadian J. Statistics, 6:143-168, 1978.
Math. Review 81g:60076
- D.A. Dawson.
Measure-valued Markov processes.
In P.L. Hennequin, editor, École d'été de probabilités
de Saint Flour XXI-1991, volume 1541 of Lecture Notes Math.,
pages 1-260. Springer-Verlag, Berlin, 1993.
Math. Review 94m:60101
- D.A. Dawson, A.M. Etheridge, K. Fleischmann, L. Mytnik, E.A. Perkins, and J. Xiong.
Mutually catalytic branching in the plane: Finite measure states.
Ann. Probab., 30(4):1681-1762, 2002.
Math. Review 1 944 004
- D.A. Dawson, A.M. Etheridge, K. Fleischmann, L. Mytnik, E.A. Perkins, and J. Xiong.
Mutually catalytic branching in the plane: Infinite measure states.
Electron. J. Probab., 7 (Paper no. 15) 61 pp. (electronic), 2002.
Math. Review 1 921 744
- D.A. Dawson and K. Fleischmann.
Catalytic and mutually catalytic super-Brownian motions.
In Ascona 1999 Conference.
Volume 52 of Progress in Probability,
pages 89-110. Birkhäuser Verlag, 2002.
Math. Review 1 958 811
- D.A. Dawson, K. Fleischmann, L. Mytnik, E.A. Perkins, and J. Xiong.
Mutually catalytic branching in the plane: Uniqueness.
Ann. Inst. Henri Poincaré Probab. Statist. 39(1):135-191, 2003.
Math. Review 1 959 845
- D.A. Dawson and E.A. Perkins. Long-time behavior and coexistence in a
mutually catalytic branching model.
Ann. Probab., 26(3):1088-1138, 1998.
Math. Review
99f:60167
- J.L. Doob.
Measure Theory.
Springer-Verlag, New York, 1994.
Math. Review 95c:28001
- E.B. Dynkin.
On regularity of superprocesses.
Probab. Theory Related Fields, 95(2):263-281, 1993.
Math. Review 94f:60107
- E.B. Dynkin.
An Introduction to Branching Measure-valued Processes.
American Mathematical Society, Providence, RI, 1994.
Math. Review 96f:60145
- E.B. Dynkin.
Diffusions, Superdiffusions and Partial Differential Equations.
Volume 50 of American Mathematical Society Colloquium Publications.
American Mathematical Society, Providence, RI, 2002.
Math. Review 2003c:60001
- A.M. Etheridge.
An Introduction to Superprocesses.
Volume 20 of Univ. Lecture Series. AMS, Rhode Island, 2000.
Math. Review 2001m:60111
- S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and
Convergence.
Wiley, New York, 1986. Math. Review
88a:60130
- S.N. Evans and E.A. Perkins. Measure-valued branching diffusions
with singular interactions
Canad. J. Math., 46(1):120-168, 1994. Math. Review
94J:60099
- S.N. Evans and E.A. Perkins.
Collision local times, historical stochastic calculus, and competing
superprocesses.
Electron. J. Probab., 3 (Paper no. 5), 120 pp. (electronic), 1998.
Math. Review 99h:60098
- K. Fleischmann and J. Xiong.
A cyclically catalytic super-Brownian motion.
Ann. Probab., 29(2):820-861, 2001.
Math. Review 2002h:60224
- R.K. Getoor.
On the construction of kernels.
In Séminaires de probabilités IX. Volume 465 of
Lecture Notes Math., pages 443-463. Springer Verlag, Berlin, 1974.
Math. Review 55:9289
- I. Iscoe.
A weighted occupation time for a class of measure-valued critical
branching Brownian motions.
Probab. Theory Related Fields, 71:85-116, 1986.
Math. Review 87c:60070
- O. Kallenberg.
Foundations of Modern Probability.
Springer-Verlag, New York, 1997.
Math. Review 99e:60001
- J.-F. Le Gall.
Spatial Branching Processes, Random Snakes and Partial
Differential Equations.
Birkhäuser Verlag, Basel, 1999.
Math. Review 2001g:60211
- C. Mueller and E.A. Perkins.
Extinction for two parabolic stochastic PDE's on the lattice.
Ann. Inst. H. Poincaré Probab. Statist.,
36(3):301-338, 2000.
Math. Review 2001i:60104
- L. Mytnik.
Collision measure and collision local time for (alpha,d,beta)
superprocesses.
J. Theoret. Probab., 11(3):733-763, 1998.
Math. Review 2000a:60146
- L. Mytnik.
Uniqueness for a mutually catalytic branching model.
Probab. Theory Related Fields, 112(2):245-253, 1998.
Math. Review
99i:60125
- L. Mytnik.
Uniqueness for a competing species model.
Canad. J. Math., 51(2):372-448, 1999.
Math. Review 2000g:60112
- E.A. Perkins.
On the martingale problem for interactive measure-valued branching
diffusions.
Mem. Amer. Math. Soc., 549, 1995.
Math. Review 95i:60076
- E.A. Perkins.
Dawson-Watanabe superprocesses and measure-valued
diffusions.
In École d'été de probabilités de Saint Flour XXIX-1999,
Lecture Notes Math., pages 125-324,
Springer-Verlag, Berlin, 2002.
Math. Review 1 915 445
- Ph. Protter.
Stochastic Integration and Differential Equations, a New Approach.
Volume 21 of Appl. Math.,
Springer-Verlag, Berlin, 1990.
Math. Review 91i:60148
- S. Roelly-Coppoletta.
A criterion of convergence of measure-valued processes: application
to measure branching processes.
Stochastics, 17:43-65, 1986.
Math. Review 88i:60132
- J.B. Walsh. An introduction to stochastic partial differential
equations.
Volume 1180 of Lecture Notes Math., pages 266-439. École d'été
de probabilités de Saint-Flour XIV - 1984, Springer-Verlag Berlin, 1986.
Math. Review
88a:60114
- K. Yosida.
Functional Analysis.
Springer-Verlag, 4th edition, 1974.
Math.
Review 50:2851
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|