![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Fixed Points of the Smoothing Transform: the Boundary Case
|
John D Biggins, University of Sheffield Andreas E Kyprianou, Heriot-Watt University |
Abstract
Let $A=(A_1,A_2,A_3,ldots)$ be a random sequence of
non-negative numbers that are ultimately zero with $E[sum A_i]=1$
and $E left[sum A_{i} log A_i right] leq 0$. The uniqueness
of the non-negative fixed points of the associated smoothing
transform is considered. These fixed points are solutions to the
functional equation $Phi(psi)= E left[ prod_{i} Phi(psi A_i)
right], $ where $Phi$ is the Laplace transform of a non-negative
random variable. The study complements, and extends, existing
results on the case when $Eleft[sum A_{i} log A_i right]<0$.
New results on the asymptotic behaviour of the solutions near zero
in the boundary case, where
$Eleft[sum A_{i} log A_i right]=0$, are obtained.
|
Full text: PDF
Pages: 609-631
Published on: June 13, 2005
|
Bibliography
-
Asmussen, S. and Hering, H. (1983).
Branching Processes.
Birkhäuser, Boston.
Math. Review 85b:60076
-
Biggins, J.D. (1977). Martingale convergence in
the branching random walk. J. Appl. Probab. 14, 25-37.
Math. Review 55 #6592
-
Biggins, J.D. (1998) Lindley-type equations in
the branching random walk. Stoch. Proc. Appl 75, 105-133.
Math. Review 99e:60186
-
Biggins, J.D. and Kyprianou, A.E. (1997) Seneta-Heyde norming in the branching random walk. Ann. Probab.
25 337-360.
Math. Review 98a:60118
-
Biggins, J.D. and Kyprianou, A.E. (2004). Measure
change in multitype branching. Adv. Appl. Probab.
36 544-581.
Math. Review 2005f:60179
-
Bingham, N. and Doney, R.A. (1975) Asymptotic
properties of supercritical branching processes. II: Crump-Mode and Jirana
processes. Adv. Appl. Probab. 7, 66-82.
Math. Review 51 #14294
-
Bramson, M.
(1979), Maximal displacement of branching Brownian motion.
Comm. Pure Appl. Math. 31, 531-581.
Math. Review 58 #13382
-
Bramson, M. (1983),
Convergence of solutions of the Kolmogorov non-linear
diffusion equations to travelling waves. Mem. Amer. Math. Soc.
44(285).
Math. Review 84m:60098
-
Caliebe, A. (2003) Symmetric fixed points of a
smoothing transformation. Adv. Appl. Probab. 35, 377-394.
Math. Review 2004f:60036
-
Caliebe, A. and Rösler, U. (2003a) Fixed points
with finite variance of a smoothing transform. Stoc. Proc. Appl.
107, 105-129.
Math. Review 2004d:60039
-
Durrett, R. and Liggett, M. (1983). Fixed points
of the smoothing transform. Z. Wahrsch. verw. Gebiete,
64 , 275-301.
Math. Review 85e:60059
-
Feller, W. (1971). An Introduction to
Probability Theory and Its Applications, Vol.II, Wiley, New York.
Math. Review 42 #5292
-
Gatzouras, D. (2000).
On the lattice case of an almost-sure renewal theorem for
branching random walks. Adv. Appl. Probab. 32,
720-737.
Math. Review 2001k:60118
-
Harris, S.C. (1999) Travelling waves for the
FKPP equation via probabilistic arguments, Proc. Roy.
Soc. Edin.
129A 503-517.
Math. Review 2000g:35109
-
Iksanov, A.M.
(2004). Elementary fixed points of the BRW smoothing transforms
with infinite number of summands.
Stoc. Proc. Appl. 114,
27-50
Math. Review 2094146
-
Iksanov, A.M. and Jurek, Z.J.
(2002). On fixed points of Poisson shot noise transforms.
Adv. Appl. Probab. 34, 798-825
Math. Review 2003i:60021
-
Kahane, J.P. and Peyrière, J. (1976). Sur
certaines martingales de Benoit Mandelbrot. Adv. Math.
22 , 131-145.
Math. Review 55 #4355
-
Kyprianou, A.E. (1998) Slow variation and
uniqueness of solutions to the functional equation in the
branching random walk. J. Appl. Probab.
35 795-802 .
Math. Review 2000d:60138
-
Kyprianou, A.E. (2004) Travelling wave solutions
to the K-P-P equation: alternatives to Simon Harris' probabilistic
analysis. Ann. Inst. H. Poincaré Prob. Statist,
40, 53-72.
Math. Review 2005a:60135
-
Liu, Q. (1998) Fixed points of a generalized
smoothing transform and applications to the branching processes.
Adv. Appl. Probab. 30, 85-112.
Math. Review 99f:60151
-
Liu, Q. (2000) On generalized multiplicative
cascades. Stoc. Proc. Appl. 86, 263-286.
Math. Review 2001b:60102
-
Lyons, R. (1997). A simple path to Biggins' martingale
convergence.
In
Classical and Modern Branching Processes
(K.B. Athreya, P. Jagers, eds.).
IMA Volumes in Mathematics and its Applications 84,
217-222. Springer-Verlag, New York.
Math. Review 1601749
-
McKean, H.P. (1975) Application of Brownian motion to the
equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure
Appl. Math. 28, 323-331.
Math. Review 53 #4262
(Correction: (1976) 29,
553-554). Math. Review 54 #11534
-
Nerman, O. (1981). On the convergence of
supercritical general (C-M-J) branching process. Z. Wahrsch.
verw. Gebiete. 57, 365-395.
Math. Review 82m:60104
-
Neveu, J. (1988). Multiplicative martingales for
spatial branching processes. In Seminar on Stochastic Processes,
1987, eds: E. Çinlar, K.L. Chung, R.K. Getoor. Progress in Probability
and Statistics, 15, 223-241. Birkhäuser, Boston.
Math. Review 91f:60144
-
Pakes, A.G. (1992). On characterizations via
mixed sums. Austral. J. Statist. 34, 323-339.
Math. Review 93k:60043
-
Rösler, U. (1992). A fixed point theorem for
distributions. Stoc. Proc. Appl. 42, 195-214
Math. Review 93k:60038
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|