|  |  | 
	|  | |  |  |  |  | |  | 
	|  |  |  | 
	 | 
 
 
 
	| Fixed Points of the Smoothing Transform: the Boundary Case 
 
 |  
		 
			| John D Biggins, University of Sheffield Andreas E Kyprianou, Heriot-Watt University
 
 |  
 
 
			 
				| Abstract Let $A=(A_1,A_2,A_3,ldots)$ be a random sequence of
non-negative numbers that are ultimately zero with $E[sum A_i]=1$
and $E left[sum A_{i} log A_i right] leq 0$. The uniqueness
of the non-negative fixed points of the associated smoothing
transform is considered. These fixed points are solutions to the
functional equation $Phi(psi)= E left[ prod_{i} Phi(psi A_i)
right], $ where $Phi$ is the Laplace transform of a non-negative
random variable. The study complements, and extends, existing
results on the case when $Eleft[sum A_{i} log A_i right]<0$.
New results on the asymptotic behaviour of the solutions near zero
in the boundary case, where
$Eleft[sum A_{i} log A_i right]=0$, are obtained.
 
 
 
 |  
   | Full text: PDF 
 Pages: 609-631
 
 Published on: June 13, 2005
 
 
 
 |  
                         
                                | Bibliography 
 
 
 Asmussen, S. and Hering, H. (1983).
  Branching Processes.
Birkhäuser, Boston. 
Math. Review 85b:60076
   
 
Biggins, J.D. (1977). Martingale convergence in
the branching random walk.    J. Appl. Probab.    14, 25-37.
Math. Review 55 #6592
   
  
Biggins, J.D. (1998) Lindley-type equations in
the branching random walk.    Stoch. Proc. Appl    75, 105-133.
Math. Review 99e:60186
   
  
  
Biggins, J.D. and Kyprianou, A.E. (1997) Seneta-Heyde norming in the branching random walk.    Ann. Probab.
   25 337-360.
Math. Review 98a:60118
   
  
  
Biggins, J.D. and Kyprianou, A.E. (2004). Measure
change in multitype branching.    Adv. Appl. Probab.
   36 544-581.
Math. Review 2005f:60179
   
  
  
Bingham, N. and Doney, R.A. (1975) Asymptotic
properties of supercritical branching processes. II: Crump-Mode and Jirana
processes.    Adv. Appl. Probab.    7, 66-82.
Math. Review 51 #14294
   
  
   
 Bramson, M.
 (1979), Maximal displacement of branching Brownian motion.
Comm. Pure Appl. Math.  31, 531-581.
Math. Review 58 #13382
   
 
    
 Bramson, M. (1983),
Convergence of solutions of the Kolmogorov non-linear
diffusion equations to travelling waves.  Mem. Amer. Math. Soc.
 44(285).
Math. Review 84m:60098
   
 
  
Caliebe, A. (2003) Symmetric fixed points of a
smoothing transformation.    Adv. Appl. Probab.  35, 377-394.
Math. Review 2004f:60036
   
 
  
Caliebe, A. and Rösler, U. (2003a) Fixed points
with finite variance of a smoothing transform.    Stoc. Proc. Appl.
 107, 105-129.
Math. Review 2004d:60039
   
 
  
Durrett, R. and Liggett, M. (1983). Fixed points
of the smoothing transform.    Z. Wahrsch. verw. Gebiete,
   64 , 275-301.
Math. Review 85e:60059
   
 
  
Feller, W. (1971).    An Introduction to
Probability Theory and Its Applications, Vol.II, Wiley, New York.
Math. Review 42 #5292
   
 
  
Gatzouras, D. (2000).
On the lattice case of an almost-sure renewal theorem for
branching random walks.    Adv. Appl. Probab.  32,
720-737.
 Math. Review 2001k:60118
   
 
 
  
Harris, S.C. (1999) Travelling waves for the
FKPP equation via probabilistic arguments,    Proc. Roy.
Soc. Edin.
   129A 503-517.
Math. Review 2000g:35109
   
 
  
Iksanov, A.M.
(2004). Elementary fixed points of the BRW smoothing transforms
with infinite number of summands. 
   Stoc. Proc. Appl. 114,
27-50
Math. Review 2094146
   
 
  
Iksanov, A.M. and Jurek, Z.J.
(2002). On fixed points of Poisson shot noise transforms.
    Adv. Appl. Probab.  34, 798-825
 Math. Review 2003i:60021
   
 
  
Kahane, J.P. and Peyrière, J. (1976). Sur
certaines martingales de Benoit Mandelbrot.    Adv. Math.
   22 , 131-145.
 Math. Review 55 #4355
   
       
     Kyprianou, A.E. (1998) Slow variation and
uniqueness of solutions to the functional equation in the
branching random walk.    J. Appl. Probab.
   35   795-802  .
Math. Review 2000d:60138
   
 
  
Kyprianou, A.E. (2004) Travelling wave solutions
to the K-P-P equation: alternatives to Simon Harris' probabilistic
analysis.    Ann. Inst. H. Poincaré Prob. Statist,
   40, 53-72.
Math. Review 2005a:60135
   
 
  
Liu, Q. (1998) Fixed points of a generalized
smoothing transform and applications to the branching processes.
   Adv. Appl. Probab.      30, 85-112.
Math. Review 99f:60151
   
 
  
Liu, Q. (2000) On generalized multiplicative
cascades.    Stoc. Proc. Appl.    86, 263-286.
Math. Review 2001b:60102
   
 
  
 Lyons, R. (1997). A simple path to Biggins' martingale
convergence.
 In
 Classical and Modern Branching Processes
(K.B. Athreya, P. Jagers, eds.).
 IMA Volumes in Mathematics and its Applications  84,
217-222. Springer-Verlag, New York.
Math. Review 1601749
   
 
  
 McKean, H.P. (1975) Application of Brownian motion to the
equation of Kolmogorov-Petrovskii-Piskunov.  Comm. Pure
Appl.  Math.  28, 323-331. 
Math. Review 53 #4262
   (Correction: (1976)  29,
553-554). Math. Review 54 #11534
   
  
Nerman, O. (1981). On the convergence of
supercritical general (C-M-J) branching process.    Z. Wahrsch.
verw. Gebiete.    57, 365-395.
Math. Review 82m:60104
   
 
  
Neveu, J. (1988). Multiplicative martingales for
spatial branching processes. In    Seminar on Stochastic Processes,
1987, eds: E. Çinlar, K.L. Chung, R.K. Getoor. Progress in Probability
and Statistics,    15, 223-241. Birkhäuser, Boston.
Math. Review 91f:60144
   
 
  
Pakes, A.G. (1992). On characterizations via
mixed sums.    Austral. J. Statist.    34, 323-339.
Math. Review 93k:60043
   
 
  
Rösler, U. (1992). A fixed point theorem for
distributions.    Stoc. Proc. Appl.    42, 195-214 
Math. Review 93k:60038
   
  
 
 
 |  
 
 
 | 
 
 
 
 
 
 
 
 
 
   | 
	|  |   
 
 |  | 
 
	|  | |  |  |  |  | 
 
 Electronic Journal of Probability.   ISSN: 1083-6489 |  |