[1] M. Aizenman
and C. M. Newman. Tree graph inequalities and critical
behavior in percolation models. J. Statist. Phys.
36 (1984): 107--143.
[2] D. J. Barsky and M. Aizenman. Percolation critical exponents
under the triangle condition. Ann. Probab. 19 (1991):
1520--1536.
[3] D. J. Barsky and C. C. Wu. Critical
exponents for the contact process under the triangle condition. J. Statist. Phys.
91 (1998): 95--124.
[4] C. Bezuidenhout
and G. Grimmett. Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19 (1991): 984--1009.
[5] E. Bolthausen and C. Ritzmann. Strong pointwise estimates for the weakly self-avoiding walk.
To appear in Ann.
Probab.
[6] C. Borgs, J. T. Chayes and D. Randall.
The van den Berg-Kesten-Reimer
inequality. Perplexing
Problems in Probability: Festschrift in honor of Harry Kesten (eds., M. Bramson and R. Durrett). Birkhäuser (1999): 159-173.
[7] D.C. Brydges and T. Spencer. Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys., 97 (1985):125--148.
[8] R. Durrett
and E. Perkins. Rescaled contact processes converge to super-Brownian
motion in two or more dimensions. Probab. Th. Rel. Fields 114
(1999): 309--399.
[9] G. Grimmett. Percolation. Springer, Berlin (1999).
[10] G. Grimmett
and P. Hiemer. Directed
percolation and random walk. In and Out of
Equilibrium (ed., V. Sidoravicius). Birkhäuser
(2002): 273-297.
[11] T. Hara and G. Slade. Mean-field critical behaviour for
percolation in high dimensions. Commun. Math. Phys., 128 (1990):333--391.
[12] T. Hara and G. Slade. Self-avoiding walk in five or more dimensions. I. The critical behaviour.
Commun. Math. Phys., 147 (1992):101--136.
[13] T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in
high-dimensional percolation. I. Critical exponents. J. Statist. Phys. 99 (2000): 1075--1168.
[14] T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in
high-dimensional percolation. II. Integrated super-Brownian excursion.
J. Math.
Phys. 41 (2000): 1244--1293.
[15] R. van der
Hofstad, F. den Hollander and G. Slade.
A new inductive approach to the lace expansion for self-avoiding walks. Probab. Th. Rel. Fields 111 (1998): 253--286.
[16] R. van der
Hofstad, F. den Hollander and G. Slade.
Construction of the incipient infinite cluster for the spread-out oriented
percolation above 4+1 dimensions. Commun. Math. Phys. 231 (2002): 435--461.
[17] R. van der
Hofstad and A. Sakai. Critical points for
spread-out self-avoiding walk, percolation and the
contact process above the upper critical dimensions. Preprint (2004).
[18] R. van der
Hofstad and A. Sakai. Convergence
of the critical finite-range contact process to super-Brownian motion above 4
spatial dimensions. In preparation.
[19] R. van der
Hofstad and G. Slade. A generalised inductive approach to the
lace expansion. Probab. Th. Rel. Fields 122 (2002): 389--430.
[20] R. van der
Hofstad and G. Slade. Convergence
of critical oriented percolation to super-Brownian motion above 4+1 dimensions.
Ann. Inst. H. Poincaré Probab.
Statist. 39 (2003): 413--485.
[21] R. van der
Hofstad and G. Slade. The
lace expansion on a tree with application to networks of self-avoiding walks. Adv.
Appl. Math. 30 (2003): 471--528.
[22] T. Liggett. Stochastic
Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999).
[23] N. Madras
and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston
(1993).
[24] B. G. Nguyen and W.-S. Yang. Triangle condition for oriented
percolation in high dimensions. Ann. Probab.
21 (1993): 1809--1844.
[25] B. G. Nguyen and W.-S. Yang. Gaussian limit for critical oriented
percolation in high dimensions. J. Statist.
Phys. 78 (1995): 841--876.
[26] A. Sakai. Analyses of the critical
behavior for the contact process based on a percolation structure. Ph.D. thesis (2000).
[27] A. Sakai. Mean-field critical
behavior for the contact process. J. Statist.
Phys. 104 (2001): 111--143.
[28] A. Sakai. Hyperscaling inequalities for the contact process and oriented percolation.
J. Statist. Phys. 106 (2002): 201--211.
[29] R. Schonmann. The triangle
condition for contact processes on homogeneous trees. J. Statist.
Phys. 90 (1998): 1429--1440.
[30] G. Slade. The diffusion of self-avoiding
random walk in high dimensions. Commun. Math. Phys. 110
(1987): 661-683.
[31] G. Slade. Convergence of
self-avoiding random walk to Brownian motion in high dimensions. J.
Phys. A: Math. Gen., 21
(1988):L417-L420.
[32] G. Slade. The lace expansion and the upper critical dimension for
percolation. Lectures in Applied Mathematics 27
(1991):53--63.
[33] G. Slade. The lace expansion and its
applications. Saint-Flour lecture notes.
Preprint (2004).
[34] C. C. Wu. The contact process on a tree: Behavior near
the first phase transition. Stochastic Process.
Appl. 57 (1995): 99--112.