![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Level Sets of Multiparameter Brownian Motions
|
Eulalia Nualart, Université de Paris 6 Thomas S. Mountford, Ecole Polytechnique Fédérale de Lausanne |
Abstract
We use Girsanov's theorem to establish a conjecture of
Khoshnevisan, Xiao and Zhong that $phi(r) = r^{N-d/2} (log log
(frac{1}{r}))^{d/2}$ is the exact Hausdorff measure function for
the zero level set of an $N$-parameter $d$-dimensional additive
Brownian motion. We extend this result to a natural
multiparameter version of Taylor and Wendel's theorem on the
relationship between Brownian local time and the Hausdorff
$phi$-measure of the zero set.
|
Full text: PDF
Pages: 594-614
Published on: September 13, 2004
|
Bibliography
1. R.C. Dalang, E. Nualart. Potential theory for hyperbolic
SPDEs. Ann. Probab. 32 (2004), 2099-2148.
Math. Review number not available.
2. K.J. Falconer. The geometry of fractal sets. Cambridge University
Press (1985). Math.
Review 0867284
3. D. Geman, J. Horowitz. Occupation densities. Ann.
Probab. 8 (1980), 1-67. Math.
Review 0556414
4. D. Geman, J. Horowitz, J. Rosen.
A local time analysis of intersections of Brownian paths in the plane. Ann.
Probab. 12 (1984), 86-107. Math. Review
0723731
5. D. Khoshnevisan, Y. Xiao, Y. Zhong.
Local times of additive Lévy processes, I: Regularity. Preprint. Math. Review number not available.
6. T.S. Mountford. Brownian sheet bubbles and local time.
Séminaire de Probabilités. To appear. Math. Review number not available.
7. C. Mueller, R. Tribe. Hitting properties of a random
string. Electron. J. Probab. 7 (2002), 1-29. Math.
Review 1902843
8. S. Orey, W.E.Pruitt. Sample functions of the
N-parameter
Wiener process. Ann. Probab. 1 (1973), 138-163. Math.
Review 0346925
9. E. Perkins. The exact Hausdorff measure of the level sets of Brownian
motion. Z. Wahrsch. verw. Gebiete 58 (1981),
373-388. Math.
Review 0639146
10. D. Revuz, M. Yor. Continuous martingales and Brownian
motion. Springer-Verlag, New York. (1998).
Math. Review number not available.
11. C.A. Rogers. Hausdorff measures. Cambridge University Press.
(1970). Math.
Review 0281862
12. S.J. Taylor.
Sample path properties of a transient stable process. J. Math. Mech. 16 (1967),
1229-1246. Math.
Review 0208684
13. S.J. Taylor, J.G. Wendel. The exact Hausdorff measure for the zero set of a stable process.
Z. Wahrsch. verw. Gebiete 6 (1966), 170-180. Math.
Review R0210196
14. Y. Xiao. Hölder conditions for the local times and the Hausdorff measure of the level sets
of Gaussian random fields Probab. Th. Rel. Fields 109 (1997), 129-157.
Math.
Review 1469923
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|