|
|
|
| | | | | |
|
|
|
|
|
Sample Path Large Deviations Principles for Poisson Shot Noise Processes and Applications
|
Ayalvadi Ganesh, Microsoft Research Claudio Macci, Universita degli Studi di Roma Giovanni Luca Torrisi, Istituto per le Applicazioni del Calcolo |
Abstract
This paper concerns sample path large deviations for Poisson
shot noise processes, and applications in queueing theory.
We first show that, under an exponential tail condition,
Poisson shot noise processes satisfy a sample path large deviations
principle with respect to the topology of pointwise convergence.
Under a stronger superexponential tail condition, we extend this
result to the topology of uniform convergence. We also give
applications of this result to determining the most likely path
to overflow in a single server queue, and to finding tail asymptotics
for the queue lengths at priority queues.
|
Full text: PDF
Pages: 1026-1043
Published on: August 3, 2005
|
Bibliography
-
L. Bondesson.
Shot noise processes and shot noise distributions.
Encyclopedia of Statistical Sciences 8 (1988) 448--452, S. Kotz Ed.,
Wiley, New York.
Math. Review number not available.
-
A.A. Borovkov.
Boundary values problems for random walks and large deviations for function spaces.
Theory Probab. Appl. 12 (1967), 575--595.
Math. Review 39 #4906
-
P. Bremaud.
An insensitivity property of Lundberg's estimate for delayed claims.
J. Appl. Probab. 37 (2000), 914--917.
Math. Review 2001e:62088
-
N.R. Campbell.
The study of discontinuous phenomena.
Proc. Camb. Phil. Soc. 15 (1909), 117--136.
Math. Review number not available.
-
A. de Acosta.
Large deviations for vector valued Levy processes.
Stochastic Process. Appl. 51 (1994), 75--115.
Math. Review 96b:60060
-
A. Dembo and O. Zeitouni.
Large Deviations Techniques and Applications (1998). Springer, New York.
Math. Review 99d:60030
-
A. Ganesh, N. O'Connell and D. Wischik.
Big Queues (2004). Lecture Notes in Mathematics 1838 Springer, Berlin.
Math. Review 2005a:60001
-
J.A. Gubner.
Computation of shot noise probability distributions and densities.
SIAM J. Sci. Comput. 17 (1996), 750--761.
Math. Review number not available.
-
C. Kluppelberg and T. Mikosch.
Explosive Poisson shot noise processes with applications to risk reserves.
Bernoulli 1 (1995), 125--147.
Math. Review 97d:60067
-
C. Kluppelberg, T. Mikosch and A. Scharf.
Regular variation in the mean and stable limits for Poisson shot noise.
Bernoulli 9 (2003), 467--496.
Math. Review 2004i:60067
-
T. Konstantopoulos and S.J. Lin.
Macroscopic models for long-range dependent network traffic.
Queueing Systems: Theory and Applications 28 (1998), 215--243.
Math. Review 99b:60159
-
S.B. Lowen and M.C. Teich.
Power-law shot noise.
IEEE Trans. Inform. Theory 36 (1990), 1302--1318.
Math. Review number not available.
-
R.M. Loynes.
The stability of a queue with non-independent inter-arrival and service times.
Proc. Camb. Phil. Soc. 58 (1962), 497--520.
Math. Review 25 #4581
-
C. Macci and G.L. Torrisi.
Asymptotic results for perturbed risk processes with delayed claims.
Insurance Math. Econom. 34 (2004), 307--320.
Math. Review 2005e:60062
-
C. Macci, G. Stabile and G.L. Torrisi.
Bounds for Lundberg parameters of non standard multivariate risk processes.
Quaderno IAC Q25-003 (2004), submitted.
Math. Review number not available.
-
M. Parulekar and A.M. Makowski.
$M/G/infty$ input processes: a versatile class of models for network traffic.
Proceedings of INFOCOM, 1997 vol. 2, 419--426.
Math. Review number not available.
-
S.O. Rice.
Mathematical analysis of random noise.
Bell Systems Tech. J. 23 (1944), 282--332.
Reprinted in: Selected Papers on Noise and Stochastic Processes (1954)
133--294, N. Wax Ed., Dover, New York.
Math. Review 6,89
-
W. Schottky.
Uber spontane Stromschwankungen in verschiedenen Elektrizittsleitern,
Annalen der Physik 57 (1918), 541--567.
Math. Review number not available.
-
G.L. Torrisi.
Simulating the ruin probability of risk processes with delay in claim settlement.
Stochastic Process. Appl. 112 (2004), 225--244.
Math. Review 2005g:91126
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|