  | 
	
	
	 | 
	 | 
	
		 |  |  |  |  | 	 | 
	 | 
	 | 
	
		
	 | 
	 | 
	 | 
	 
	
 
 
	
	    
Critical constants for recurrence on groups of polynomial growth	   
  
	 | 
  
 
	  
		 
			
			   
David  Revelle,  Russ M Thompson, Cornell University 			 | 
		  
	   
		
  
		
			 
				
					   
					   Abstract 
	The critical constant for recurrence, crt, is an invariant of the quotient space H  G of a finitely generated group. The constant is determined by the largest moment a probability measure on G can have without the induced random walk on H  G being recurrent. We present a description of which subgroups of groups of polynomial volume growth are recurrent. Using this we show that for such recurrent subgroups crt corresponds to the relative growth rate of H in G, and in particular  crt is either 0, 1 or 2.
				   
 
  
				 | 
			  
		   
   
Full text: PDF
  Pages: 710-722
  Published on: May 20, 2010
 
  
	 | 
 
 
                
                         
                                
                                          
                                           Bibliography 
           - Aldous, David J.; Fill, James Allen. Reversible MArkov Chains. Reversible Markov Chains and Random Walks on Graphs, 2002. http://www.stat.berkeley.edu/~aldous/RWG/book.html
	  
 - Bass, H. The degree of polynomial growth of finitely generated nilpotent  groups.  Proc. London Math. Soc. (3)  25  (1972), 603--614. MR0379672 (52 #577) 	  
 - de la Harpe, Pierre. Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL,  2000. vi+310 pp. ISBN: 0-226-31719-6; 0-226-31721-8  MR1786869 (2001i:20081) 	  
 - Dynkin, Evgenii B.; Yushkevich, Aleksandr A. Markov processes: Theorems and problems. Translated from the Russian by James S. Wood Plenum Press, New York  1969 x+237 pp. MR0242252 (39 #3585a) 
	  
 - Erschler, Anna. Boundary behavior for groups of subexponential growth.  Ann. of Math. (2)  160  (2004),  no. 3, 1183--1210. MR2144977 (2006d:20072) 	  
 - Erschler, Anna. Critical constants for recurrence of random walks on $G$-spaces.  Ann. Inst. Fourier (Grenoble)  55  (2005),  no. 2, 493--509. MR2147898 (2006c:20085) 
	  
 - Gromov, Mikhael. Groups of polynomial growth and expanding maps.  Inst. Hautes Études Sci. Publ. Math.  No. 53  (1981), 53--73. MR0623534 (83b:53041) 	  
 - Gallardo, Léonard; Schott, René. Marches aléatoires sur les espaces homogènes de certains groupes  de type rigide. (French)  Conference on Random Walks (Kleebach, 1979) (French),   pp. 149--170, 4, Astérisque, 74, Soc. Math. France, Paris,  1980.  MR0588161 (82e:60107a)	  
 - Guivarc'h, Yves. Groupes de Lie à croissance polynomiale. (French)  C. R. Acad. Sci. Paris Sér. A-B  272  (1971), A1695--A1696. MR0302819 (46 #1962) 	  
 - Hebisch, W.; Saloff-Coste, L. Gaussian estimates for Markov chains and random walks on groups.  Ann. Probab.  21  (1993),  no. 2, 673--709. MR1217561 (94m:60144) 	  
 - Lubotzky, Alexander. Cayley graphs: eigenvalues, expanders and random walks.  Surveys in combinatorics, 1995 (Stirling),   155--189, London Math. Soc. Lecture Note Ser., 218, Cambridge Univ. Press, Cambridge,  1995.  MR1358635 (96k:05081) 	  
 - Nekrashevych, Volodymyr. Self-similar groups. Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI,  2005. xii+231 pp. ISBN: 0-8218-3831-8  MR2162164 (2006e:20047) 	  
 - Pólya, Georg. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die  Irrfahrt im Straßennetz. (German)  Math. Ann.  84  (1921),  no. 1-2, 149--160. MR1512028 
 - Revelle, David. Random walks on solvable groups. Thesis.  Cornell University, 2002. 	  
 - Spitzer, Frank. Principles of random walks. Second edition. Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, New York-Heidelberg,  1976. xiii+408 pp. MR0388547 (52 #9383) 	  
 - Varopoulos, Nicholas Th. Théorie du potentiel sur les groupes nilpotents. (French)  [Potential theory on nilpotent groups]  C. R. Acad. Sci. Paris Sér. I Math.  301  (1985),  no. 5, 143--144. MR0801947 (86i:22017) 
   
                                   
 
  
                                 | 
                          
                   
	  
 
 
 
 | 
		
			
 
 
 
 
 
 
 
 
  
			
			
			
			 
		 | 
		
	| 
	 | 
	
    	 
    	
  
     | 
     | 
 
	 | 
	
		 |  |  |  |  | 
 
 Electronic Journal of Probability.   ISSN: 1083-6489 	 | 
	 |