|
|
|
| | | | | |
|
|
|
|
|
Limit Theorems for Self-normalized Large Deviation
|
Qiying WANG, School of Maths and Stats, University of Sydney |
Abstract
Let $X, X_1, X_2, cdots $ be i.i.d. random
variables with zero mean and finite variance $si^2$. It is well
known that a finite exponential moment assumption is necessary to
study limit theorems for large deviation for the standardized
partial sums. In this paper, limit theorems for large deviation
for self-normalized sums are derived only under finite moment conditions.
In particular, we show that, if $EX^4
|
Full text: PDF
Pages: 1260-1285
Published on: November 14, 2005
|
Bibliography
-
Bentkus, V.; Bloznelis, M.; Götze, F.
A Berry-Esséen bound for Student's statistic in the non-i.i.d. case.
J. Theoret. Probab. 9 (1996), no. 3, 765--796.
MR1400598 (97e:60036)
-
Bentkus, V.; Götze, F.. The Berry-Esseen bound for Student's statistic.
Ann. Probab.
24 (1996), 491--503.
MR1387647 (97f:62021)
-
Bentkus, V.; Götze, F.; van Zwet, W. R. An Edgeworth expansion for symmetric
statistics.
Ann. Statist.
25 (1997), no. 2, 851--896.
MR1439326 (98k:62017)
- Chistyakov, G. P.; Götze, F. Moderate deviations for Student's statistic.
Teor. Veroyatnost. i Primenen.
47 (2003), no. 3, 415--428.
MR1975426 (2004c:60140)
- Friedrich, Karl O. A Berry-Esseen bound for functions of independent random
variables.
Ann. Statist.
17 (1989), no. 1, 170--183.
MR0981443 (90c:60015)
- Giné, Evarist; Götze, Friedrich; Mason,David M.
When is the Student $t$-statistic asymptotically standard normal?
Ann. Probab.
25 (1997), no. 3, 1514--1531.
MR1457629 (98j:60033)
- Hall, Peter.
Edgeworth expansion for Student's $t$ statistic under minimal moment conditions.
Ann. Probab.
15 (1987), no. 3, 920--931.
MR0893906 (88j:62039)
- Hall, Peter. On the effect of random norming on the rate of convergence
in the central limit theorem.
Ann. Probab.
16 (1988), no. 3, 1265--1280.
MR0942767 (89e:60043)
- Hall, Peter; Jing, Bing-Yi. Uniform coverage bounds for confidence
intervals and Berry-Esseen theorems for Edgeworth expansion.
Ann. Statist.
23 (1995), no. 2, 363--375.
MR1332571 (96b:62077)
- He, Xuming; Shao, Qi-Man. On parameters of increasing dimensions.
J. Multivariate Anal.
73 (2000), no. 1, 120--135.
MR1766124 (2001g:62016)
- Jing, Bing-Yi; Shao, Qi-Man; Wang, Qiying.
Self-normalized Cramér-type large deviations for independent random variables.
Ann. Probab.
31 (2003), no. 4, 2167--2215.
MR2016616 (2004k:60069)
- Logan, B. F.; Mallows, C. L.; Rice, S. O.; Shepp,
L. A. Limit distributions of self-normalized sums.
Ann. Probability
1 (1973), 788--809.
MR0362449 (50 #14890)
- Petrov, Valentin V.
Limit theorems of probability theory. Sequences of independent random variables.
Oxford Studies in Probability, 4.
Oxford Science Publications. The Clarendon Press,
Oxford University Press, New York, 1995.
MR1353441 (96h:60048)
- Prawitz, H.akan. Limits for a distribution, if the characteristic function
is given in a finite domain.
Skand. Aktuarietidskr.
1972, 138--154 (1973)
MR0375429 (51 #11622)
- Putter, Hein; van Zwet, Willem R. Empirical Edgeworth expansions for
symmetric statistics. Ann. Statist.
26 (1998), no. 4, 1540--1569.
MR1647697 (99k:62036)
- Slavova, V. V. On the Berry-Esseen bound for Student's statistic.
Stability problems for stochastic models (Uzhgorod, 1984),
355--390, Lecture Notes in Math., 1155, Springer, Berlin, 1985.
MR0825335 (87i:60029)
- Shao, Qi-Man. A Cramér type large deviation result for Student's $t$-statistic.
J. Theoret. Probab.
12 (1999), no. 2, 385--398.
MR1684750 (2000d:60046)
- van Zwet, W. R. A Berry-Esseen bound for symmetric statistics.
Z. Wahrsch. Verw. Gebiete
66 (1984), no. 3, 425--440.
MR0751580 (86h:60063)
- Wang, Qiying; Jing, Bing-Yi.
An exponential nonuniform Berry-Esseen bound for self-normalized sums.
Ann. Probab.
27 (1999), no. 4, 2068--2088.
MR1742902 (2001c:60045)
- Wang, Qiying; Jing, Bing-Yi; Zhao, Lincheng. The Berry-Esseen bound for
Studentized statistics.
Ann. Probab.
28 (2000), no. 1, 511--535.
MR1756015 (2001a:62011)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|