|
|
|
| | | | | |
|
|
|
|
|
On the asymptotic behaviour of increasing self-similar Markov processes
|
María Emilia Caballero, Instituto de Matemáticas UNAM Mexico Víctor Manuel Rivero, Centro de Investigación en Matemáticas, Guanajuato |
Abstract
It has been proved by Bertoin and Caballero cite{BC2002} that a $1/alpha$-increasing
self-similar Markov process $X$ is such that $t^{-1/alpha}X(t)$
converges weakly, as $ttoinfty,$ to a degenerate random variable whenever
the subordinator associated to it via Lamperti's transformation has
infinite mean. Here we prove that $log(X(t)/t^{1/alpha})/log(t)$ converges in law to a
non-degenerate random variable if and only if the associated subordinator has Laplace exponent that varies regularly at $0.$
Moreover, we show that
$liminf_{ttoinfty}log(X(t))/log(t)=1/alpha,$ a.s. and provide
an integral test for the upper functions of ${log(X(t)), tgeq 0}.$ Furthermore, results concerning the rate of growth of the random clock appearing in Lamperti's transformation are obtained. In particular, these allow us to establish estimates for the left tail of some exponential functionals of subordinators. Finally, some of the implications of these results in the theory of self-similar fragmentations are discussed.
|
Full text: PDF
Pages: 865-894
Published on: April 19, 2009
|
Bibliography
-
Aaronson, Jon. An introduction to infinite ergodic theory.
Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997. Math. Review 99d:28025
-
Bertoin, Jean. Sample path behaviour in connection with generalized arcsine laws.
Probab. Theory Related Fields 103 (1995), 317--327. Math. Review 96m:60094
-
Bertoin, Jean. Lévy processes.
Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. Math. Review 98e:60117
-
Bertoin, Jean. Subordinators: examples and applications.
Lectures on probability theory and statistics (Saint-Flour, 1997),
1--91, Lecture Notes in Math., 1717, Springer, Berlin, 1999. Math. Review 2002a:60001
-
Bertoin, Jean. Self-similar fragmentations.
Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), 319--340. Math. Review 2003h:60109
-
Bertoin, Jean. The asymptotic behavior of fragmentation processes.
J. Eur. Math. Soc. (JiS) 5 (2003), 395--416. Math. Review 2005d:60115
-
Bertoin, Jean. Random fragmentation and coagulation processes.
Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006. Math. Review 2007k:60004
-
Bertoin, Jean; Caballero, Maria-Emilia. Entrance from 0+ for increasing semi-stable Markov processes.
Bernoulli 8 (2002), 195--205. Math. Review 2003c:60071
-
Bertoin, Jean; Yor, Marc. On subordinators, self-similar Markov processes and some factorizations of the exponential variable.
Electron. Comm. Probab. 6 (2001), 95--106 (electronic). Math. Review 2002k:60097
-
Bertoin, Jean; Yor, Marc. The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes.
Potential Anal. 17 (2002), 389--400. Math. Review 2003i:60082
-
Bertoin, Jean; Yor, Marc. Exponential functionals of Lévy processes.
Probab. Surv. 2 (2005), 191--212 (electronic). Math. Review 2007b:60116
-
Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation.
Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1989. Math. Review 90i:26003
-
Brennan, Michael D.; Durrett, Richard. Splitting intervals.
Ann. Probab. 14 (1986), 1024--1036. Math. Review 87k:60088
-
Brennan, Michael D.; Durrett, Richard. Splitting intervals. II. Limit laws for lengths.
Probab. Theory Related Fields 75 (1987), 109--127. Math. Review 88k:60058
-
Carmona, Philippe; Petit, Frédérique; Yor, Marc. On the distribution and asymptotic results for exponential functionals of Lévy processes. Exponential functionals and principal values related to Brownian motion,
73--130, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1997. Math. Review 99h:60144
-
Chaumont, Loic; Pardo, J. C. The lower envelope of positive self-similar Markov processes.
Electron. J. Probab. 11 (2006), 1321--1341 (electronic). Math. Review 2008f:60042
-
Csáki, E.; Földes, A. On two ergodic properties of self-similar processes.
Asymptotic methods in probability and statistics (Ottawa, ON, 1997), 97--111, North-Holland, Amsterdam, 1998. Math. Review 2000d:60049
-
Fitzsimmons, P. J. On the existence of recurrent extensions of self-similar Markov processes.
Electron. Comm. Probab. 11 (2006), 230--241 (electronic). Math. Review 2008h:60143
-
Hawkes, John. On the potential theory of subordinators.
Z. Warscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), 113--132. Math. Review 52 #9389
-
Lamperti, John. Semi-stable Markov processes. I.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 205--225. Math. Review 46 #6478
-
Resnick, Sidney I.; Rubinovitch, Michael. The structure of extremal processes.
Advances in Appl. Probability 5 (1973), 287--307. Math. Review 50 #3359
-
Rivero, Víctor. A law of iterated logarithm for increasing self-similar Markov processes.
Stoch. Stoch. Rep. 75 (2003), 443--472. Math. Review 2005e:60087
-
Rivero, Víctor. Sinaĭ's condition for real valued Lévy processes.
Ann. Inst. H. Poincaré Probab. Statist. 43 (2007), 299--319. Math. Review 2008k:60090
-
Rosiński, Jan. Tempering stable processes.
Stochastic Process. Appl. 117 (2007), 677--707. Math. Review 2008g:60146
-
Song, Renming; Vondraček, Zoran. Potential theory of special subordinators and subordinate killed stable processes.
J. Theoret. Probab. 19 (2006), 817--847. Math. Review 2008g:60237
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|