![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
A Cramér Type Theorem for Weighted Random Variables
|
Jamal Najim, Université Paris 10-Nanterre |
Abstract
A Large Deviation Principle (LDP) is proved for the family $1/n sum_1^n
f(x_i^n) Z_i$ where $1/n sum_1^n delta_{x_i^n}$ converges weakly to a
probability measure on R and $(Z_i)_{iin N}$ are $R^d$-valued independent and identically
distributed random variables having some exponential moments, i.e.,
Eea |Z|< +infty for some 0< a <+infty.
The main improvement of this work is the relaxation of
the steepness assumption concerning the
cumulant generating function of the variables $(Z_i)_{i in N}$. In fact,
Gärtner-Ellis' theorem is no longer available in this situation.
As an application, we derive a LDP for the family of empirical measures
$1/n sum_1^n Z_i delta_{x_i^n}$.
These measures are of interest in estimation theory
(see Gamboa et al., Csiszar et al.), gas theory
(see Ellis et al., van den Berg et al.), etc.
We also derive LDPs for empirical processes in the spirit of Mogul'skii's theorem.
Various examples illustrate the scope of our results.
|
Full text: PDF
Pages: 1-32
Published on: October 12, 2001
|
Bibliography
-
G. Ben Arous, A. Dembo, and A. Guionnet.
Aging of spherical spin glasses.
Probab. Theory Related Fields, 120(1):1-67, 2001.
No Math. Review.
-
R.R. Bahadur and S. Zabell.
Large deviations of the sample means in general vector spaces.
Ann. Probab., 7:587-621, 1979.
Math. Review number
MR80i:60031
-
B. Bercu, F. Gamboa, and M. Lavielle.
Sharp large deviations for gaussian quadratic forms with
applications.
ESAIM Probab. Statist., 4:1-24, 2000.
Math. Review number
MR2001b:60039
-
B. Bercu, F. Gamboa, and A. Rouault.
Large deviations for quadratic functionals of stationary Gaussian
processes.
Stochastic Process. Appl., 71:75-90, 1997.
Math. Review number
MR99c:60052
-
W. Bryc and A. Dembo.
Large deviations for quadratic functionals of Gaussian processes.
J. Theoret. Probab., 10:307-332, 1997.
Math. Review number
MR98g:60056
-
I. Csiszár, F. Gamboa, and E. Gassiat.
Mem pixel correlated solutions for generalized moment and
interpolation problems.
IEEE Trans. Inform. Theory, 45(7):2253-2270, 1999.
Math. Review number
MR2000i:94004
-
D. Dacunha-Castelle and F. Gamboa.
Maximum d'entropie et problème des moments.
Ann. Inst. H. Poincaré Probab. Statist., 26:567-596, 1990.
Math. Review number
MR92a:62008
-
A. de Acosta.
Large deviations for vector-valued Lévy processes.
Stochastic Process. Appl., 51:75-115, 1994.
Math. Review number
MR96b:60060
-
A. Dembo and O. Zeitouni.
Large Deviations Techniques And Applications.
Springer Verlag, New York, second edition, 1998.
Math. Review number
MR99d:60030
-
N. Dunford and J.T. Schwartz.
Linear Operators, Part I.
Interscience Publishers Inc., New York, 1958.
Math. Review number
MR90g:47001a
-
R.S. Ellis, J. Gough, and J.V. Pulé.
The large deviation principle for measures with random weights.
Rev. Math. Phys., 5(4):659-692, 1993.
Math. Review number
MR94j:60051
-
F. Gamboa and E. Gassiat.
Bayesian methods and maximum entropy for ill-posed inverse problems.
Ann. Statist., 25(1):328-350, 1997.
Math. Review number
MR98k:62002
-
F. Gamboa, A. Rouault, and M. Zani.
A functional large deviations principle for quadratic forms of
Gaussian stationary processes.
Statist. Probab. Lett., 43:299-308, 1999.
Math. Review number
MR2000j:60040
-
C. Léonard.
Large deviations for Poisson random measures and processes with
independent increments.
Stochastic Process. Appl., 85:93-121, 2000.
Math. Review number
MR2001b:60041
-
C. Léonard and J. Najim.
An extention of Sanov's theorem. Application to the Gibbs
conditionning principle.
Preprint, 2000.
No Math. Review.
-
J. Lynch and J. Sethuraman.
Large deviations for processes with independent increments.
Ann. Probab., 15(2):610-627, 1987.
Math. Review number
MR88m:60076
-
A.A. Mogul'skii.
Large deviations for trajectories of multi-dimentional random walks.
Theory Probab. Appl., 21:300-315, 1976.
Math. Review number
MR54%20%238810
-
A.A. Mogul'skii.
Large deviations for processes with independent increments.
Ann. Probab., 21:202-213, 1993.
Math. Review number
MR94g60053
-
R. T. Rockafellar.
Convex Analysis.
Princeton University Press, Princeton, 1970.
Math. Review number
MR97m:49001
-
R. T. Rockafellar.
Convex integral functionals and duality.
In E. Zarantello, editor, Contributions to Non Linear Functional
Analysis, pages 215-236. Academic Press, 1971.
Math. Review number
MR52%20%2311693
-
R. T. Rockafellar.
Integrals which are convex functionals, II.
Pacific J. Math., 39(2):439-469, 1971.
Math. Review number
MR46%20%239710
-
M. van den Berg, T. C. Dorlas, J. T. Lewis, and J. V. Pulé.
A perturbed mean field model of an interacting boson gas and the
large deviation principle.
Comm. Math. Phys., 127(1):41-69, 1990.
Math. Review number
MR91c82037
-
M. Zani.
Grandes déviations pour des fonctionnelles issues de la
statistique des processus.
PhD thesis, Université Paris-Sud, 1999.
No Math. Review.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|