![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Renormalizations of Branching Random Walks in Equilibrium
|
Iljana Zähle, Universität Erlangen-Nürnberg |
Abstract
We study the d-dimensional branching random walk for d>2.
This process has extremal equilibria for every intensity. We are interested in
the large space scale and large space-time scale behavior of the equilibrium
state. We show that the fluctuations of space and space-time averages with a
non-classical scaling are Gaussian in the limit. For this purpose we use the
historical process, which allows a family decomposition. To control the
distribution of the families we use the concept of canonical measures and Palm
distributions.
|
Full text: PDF
Pages: 1-57
Published on: December 3, 2001
|
Bibliography
-
J.T. Cox and A. Greven. On the long term behavior of some finite particle
systems.
Probab. Theory Related Fields, 85(2):195-237, 1990.
Math
Review link
-
D.A. Dawson and A. Greven. Multiple space-time scale analysis for interacting
branching models.
Electron. J. Probab., 1:no. 14, approx. 84 pp.
(electronic), 1996.
Math
Review link
-
D.A. Dawson, L.G. Gorostiza and A.Wakolbinger. Occupation time fluctuations
in branching systems.
J. Theoret. Probab., 14:729-796, 2001.
Math
Review link
-
D.A. Dawson and E.A. Perkins. Historical processes.
Mem. Amer. Math.
Soc., 93(454):iv+179, 1991.
Math
Review link
-
R.L. Dobrushin. Gaussian and their subordinated self-similar random generalized
fields.
Ann. Probab., 7(1):1-28, 1979.
Math
Review link
-
E.B. Dynkin. Branching particle systems and superprocesses.
Ann. Probab.,
19(3):1157-1194, 1991.
Math
Review link
-
A. Greven. A phase transition for the coupled branching process. I. The
ergodic theory in the range of finite second moments.
Probab. Theory
Related Fields, 87(4):417-458, 1991.
Math
Review link
-
I.M. Gel'fand and N.Ya. Vilenkin.
Generalized functions IV: Applications
of harmonic analysis. Academic Press, New York and London, 1964.
Math
Review link
-
L.G. Gorostiza, S. Roelly and A. Wakolbinger. Sur la persistance du processus
de Dawson-Watanabe stable. l'interversion de la limite en temps et de la
renormalisation. In Sem. Prob. XXIV, volume 1426 of Lecture Notes
in Mathematics, pages 275-281, Berlin, 1990. Springer-Verlag.
Math
Review link
-
L.G. Gorostiza and A. Wakolbinger. Persistence criteria for a class of
critical branching particle systems in continuous time.
Ann. Probab.,
19(1):266-288, 1991.
Math
Review link
-
R.A. Holley and D.W. Stroock. Generalized Ornstein-Uhlenbeck processes
and infinite particle branching Brownian motions.
Publ. Res. Inst. Math.
Sci., Kyoto Univ., 14:741-788, 1978.
Math
Review link
-
J.-F. LeGall. Une construction trajectorielle de certains processus de
Markov à valeurs mesures.
C. R. Acad. Sci. Paris Sér.
I Math., 308(18):533-538, 1989.
Math
Review link
-
J.-F. LeGall. Brownian excursions, trees and measure-valued branching processes.
Ann.
Probab., 19(4):1399-1439, 1991.
Math
Review link
-
T.M. Liggett and F. Spitzer. Ergodic theorems for coupled random walks
and other systems with locally interacting components.
Z. Wahrsch. Verw.
Gebiete, 56(4):443-468, 1981.
Math
Review link
-
F. Spitzer.
Principles of random walk. D. Van Nostrand Co., Inc.,
Princeton, N.J.-Toronto-London, 1964. The University Series in Higher Mathematics.
Math
Review link
-
I. Zähle. Renormalization of the voter model in equilibrium.
Ann.
Probab., 29(3):1262-1302, 2001.
Math
Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|