![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Permutation matrices and the moments of their characteristics polynomials
|
Dirk Zeindler, University Zürich |
Abstract
In this paper, we are interested in the moments of the characteristic polynomial Zn(x) of the n×n permutation matrices with respect to the uniform measure.
We use a combinatorial argument to write down the generating function of E[∏k=1p Znsk(xk)] for sk ∈ N. We show with this generating function that limn→∞ E[∏k=1p Znsk(xk)] exists for maxk|xk| < 1 and calculate the growth rate for p=2, |x1|=|x2|=1, x1=x2 and n→∞.
We also look at the case sk ∈ C. We use the Feller coupling to show that for each |x| < 1 and s ∈ C there exists a random variable Z∞s(x) such that Zns(x) →d
Z∞s(x) and
E[∏k=1p Znsk(xk)]→E[∏k=1p Z∞sk(xk)] for maxk|xk| < 1 and n→∞
|
Full text: PDF
Pages: 1092-1118
Published on: July 7, 2010
|
Bibliography
-
Arratia, Richard; Barbour, A. D.; Tavaré, Simon. Logarithmic combinatorial structures: a probabilistic approach.
EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2003. xii+363 pp. ISBN: 3-03719-000-0 MR2032426 (2004m:60004)
-
Bourgade, P.; Hughes, C. P.; Nikeghbali, A.; Yor, M. The characteristic polynomial of a random unitary matrix: a
probabilistic approach.
Duke Math. J. 145 (2008), no. 1, 45--69. MR2451289 (2009j:60011)
-
Bump, Daniel. Lie groups.
Graduate Texts in Mathematics, 225. Springer-Verlag, New York, 2004. xii+451 pp. ISBN: 0-387-21154-3 MR2062813 (2005f:22001)
-
Bump, Daniel; Gamburd, Alex. On the averages of characteristic polynomials from classical
groups.
Comm. Math. Phys. 265 (2006), no. 1, 227--274. MR2217304 (2008f:60009)
-
Flajolet, Philippe; Sedgewick, Robert. Analytic combinatorics.
Cambridge University Press, Cambridge, 2009. xiv+810 pp. ISBN: 978-0-521-89806-5 MR2483235 (Review)
-
Freitag, Eberhard; Busam, Rolf. Complex analysis.
Translated from the 2005 German edition by Dan Fulea.
Universitext. Springer-Verlag, Berlin, 2005. x+547 pp. ISBN: 978-3-540-25724-0; 3-540-25724-1 MR2172762 (2006g:30002)
-
Fritzsche, Klaus; Grauert, Hans. From holomorphic functions to complex manifolds.
Graduate Texts in Mathematics, 213. Springer-Verlag, New York, 2002. xvi+392 pp. ISBN: 0-387-95395-7 MR1893803 (2003g:32001)
-
Gut, Allan. Probability: a graduate course.
Springer Texts in Statistics. Springer, New York, 2005. xxiv+603 pp. ISBN: 0-387-22833-0 MR2125120 (2006a:60001)
-
Hambly, B. M.; Keevash, P.; O'Connell, N.; Stark, D. The characteristic polynomial of a random permutation matrix.
Stochastic Process. Appl. 90 (2000), no. 2, 335--346. MR1794543 (2002c:15041)
-
Harro Heuser.
Lehrbuch der Analysis Teil 1.
B. G. Teubner, 10 edition, 1993. Math. Review number not available.
-
Keating, J. P.; Snaith, N. C. Random matrix theory and $zeta(1/2+it)$.
Comm. Math. Phys. 214 (2000), no. 1, 57--89. MR1794265 (2002c:11107)
-
Macdonald, I. G. Symmetric functions and Hall polynomials.
Second edition.
With contributions by A. Zelevinsky.
Oxford Mathematical Monographs. Oxford Science Publications.
The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN: 0-19-853489-2 MR1354144 (96h:05207)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|