![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Laplace Asymptotic Expansions for Gaussian Functional Integrals
|
Ian M. Davies, University of Wales, Swansea |
Abstract
We obtain a Laplace asymptotic expansion,
in orders of l, of
Erx
{G(lx) e-l
-2
F(lx)}
the expectation being with respect to a Gaussian process.
We extend a result of Pincus
and build upon the previous work of Davies and Truman.
Our methods differ from those of
Ellis and Rosen in that we use the supremum norm to simplify
the application of the result.
|
Full text: PDF
Pages: 1-19
Published on: September 21, 1998
|
Bibliography
-
I. M. Davies and A. Truman (1982),
Laplace asymptotic expansions of conditional Wiener Integrals and generalized Mehler kernel formulas.
J. Math. Phys. 23, 2059--2070.
Math Review 85d:81045a
-
I. M. Davies and A. Truman (1983),
On the Laplace asymptotic expansion of conditional
Wiener Integrals and the Bender-Wu formula for x2n-anharmonic oscillators.
J. Math. Phys. 24, 255--266.
Math Review 85d:81045b
-
I. M. Davies and A. Truman (1982),
Laplace asymptotic expansions of conditional Wiener Integrals and applications
to quantum physics.
Springer Lecture Notes in Physics 173, 40--55.
Math Review 85j:60119
-
I. M. Davies and A. Truman (1984),
Laplace asymptotic expansions of conditional Wiener
Integrals and generalized Mehler kernel formulae for Hamiltonians on
L2(Rn).
J. Phys. A17, 2773--2789.
Math Review 86k:81058
-
I. M. Davies and A. Truman (1987),
The charged Boson Gas in an homogeneous magnetic field.
Physica 141A, 613--624.
Math Review 88g:82021
-
R. S. Ellis and J. S. Rosen (1982),
Asymptotic analysis of Gaussian integrals I.
Trans. Amer. Math. Soc.273, 447--481.
Math Review 84h:60074a
-
R. S. Ellis and J. S. Rosen (1981),
Asymptotic analysis of Gaussian integrals II.
Comm. Math. Phys. 82, 153--181.
Math Review 84h:60074b
-
R. S. Ellis and J. S. Rosen (1982),
Laplace's Method for Gaussian integrals with an application to statistical mechanics.
Ann. Probability 10, 47--66.
Math Review 82m:60010
-
M. Pincus (1968),
Gaussian processes and Hammerstein integral equations.
Trans. Amer. Math. Soc. 134, 193--214.
Math Review 37 #6994
-
M. Schilder (1966),
Some asymptotic formulas for Wiener integrals.
Trans. Amer. Math. Soc. 125, 63--85.
Math Review 34 #1770
-
B. Simon (1979),
Functional Integration and Quantum Physics.
(Academic Press, New York)
Math Review 84m:81066
-
D. Stroock (1984),
An Introduction to the Theory of Large Deviations.
(Springer Verlag, New York)
Math Review 86h:60067a
-
Y. V. Prohorov (1956),
Convergence of random processes and limit theorems in probability.
Theor. Probability Appl.1, 177--238.
Math Review 18-943b
-
N. Dunford and J. T. Schwarz (1958),
Linear Operators.
(Interscience, New York)
Math Review 28 #8302
-
S. G. Mikhlin (1965),
The problem of the minimum of a quadratic functional.
(Holden-Day, San Francisco) (translated by A. Feinstein)
Math Review 30 #1427
-
H. H. Kuo (1975),
Gaussian measures in Banach Spaces.
Springer Lecture Notes in Mathematics 463, 112.
Math Review 57 #1628
-
D. E. Varberg (1967),
Equivalent Gaussian measures with a particularly simple
Radon-Nikodym derivative.
Ann. Math. Stat. 38, 1027--1030.
Math Review 35 #4981
-
R. Azencott (1984),
Dénsite des diffusions en temps petit: Dévelopements
asymptotiques I.
Springer Lecture Notes in Mathematics 1059, 402--498.
Math Review 86i:60196
-
R. Azencott and H. Doss (1985),
L'équation de Schrödinger quand h tend
vers zéro: une approche probabilistique.
Springer Lecture Notes in Mathematics 1109, 1--17.
Math Review 87b:81042
-
R. Azencott (1992),
A common large deviations framework for sequential annealing
and parallel annealing.
Simulated Annealing, 11--23, (Wiley, New York, 1992)
Math Review 94e:65014
-
G. Ben Arous (1988),
Methods de Laplace et de la phase stationnaire sur l'espace
de Wiener.
Stochastics 25, 125--153.
Math Review 91h:60070
-
G. Ben Arous and M. Ledoux (1993),
Schilder's large deviation principle without
topology.
Pitman Research Notes in Mathematics 284, 107--121.
Math Review 96f:60037
-
G. Ben Arous, J.-D. Deuschel and D. W. Stroock (1993),
Precise asymptotics in
large deviations
Bull. Sci. Math. 117, 107--124.
Math Review 93m:60052
-
G. Ben Arous and A. Rouault (1993),
Laplace asymptotics for reaction-diffusion
equations.
Prob. Theor. Rel. Fields 97, 259--285.
Math Review 94k:35149
-
S. Kusuoka and D. W. Stroock (1991),
Precise asymptotics of certain
Wiener functionals.
J. Funct. Anal. 99, 1--74.
Math Review 93a:60085
-
S. Kusuoka and D. W. Stroock (1994),
Asymptotics of certain Wiener
functionals with degenerate extrema.
Comm. Pure Appl. Math. 47, 477--501.
Math Review 95i:60056
-
S. Rossignol (1993),
D'évelopements asymptotiques d'intégrales de Laplace sur
l'espace de Wiener dans le cas dégénéré.
C. R. Acad. Sci. Paris 317, 971--974.
Math Review 94k:60090
-
S. Takanobu and S. Watanabe (1993),
Asymptotic expansion formulas of the Schilder
type for a class of conditional Wiener functional integrations.
Pitman Research Notes in Mathematics 284, 194--241.
Math Review 96m:60128
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|