|
|
|
| | | | | |
|
|
|
|
|
Complex determinantal processes and H1 noise
|
Brian Rider, University of Colorado, Boulder Balint Virag, University of Toronto |
Abstract
For the plane, sphere, and hyperbolic plane we
consider the canonical invariant determinantal point
processes with intensity ρ dν, where ν is the
corresponding invariant measure. We show that as ρ
converges to infinity, after centering, these processes
converge to invariant H1 noise. More precisely, for all
functions f in the intersection of H1(ν) and L1(ν) the
distribution of ∑ f(z) - ρ/π ∫ f dν converges
to Gaussian with mean 0 and variance given by ||f||_H1^2/
(4 π).
|
Full text: PDF
Pages: 1238-1257
Published on: October 9, 2007
|
Bibliography
-
Borodin, A, Okounkov, A., and Olshanski, G. (2000).
Asymptotics of Plancherel measures for symmetric groups.
J. Amer. Math. Soc. 13, 481-515.
Math. Review 2001g:05103
-
Burton, R., and Pemantle, R. (1993). Local
characteristics, entropy, and limit theorems for spanning
trees and domino tilings via transfer-impedances. Ann.
Probab. 21. 1329-1371. Math. Review 94m:60019
-
Costin, O. and Lebowitz, J. (1995). Gaussian
fluctuations in random matrices. Phys. Review Letters
75, 69-72.
-
Diaconis, P. (2003). Patterns in eigenvalues: the
70th Josiah Willard Gibbs lecture. Linear functionals of
eigenvalues of random matrices. Bull. Amer. Math.
Soc. 40, 155-178.
Math. Review 2004d:15017
-
Diaconis, P. and Evans, S.N. (2001). Linear
functionals of eigenvalues of random matrices. Trans.
AMS 353, 2615-2633.
Math. Review 2002d:60003
-
Ginibre, J. (1965). Statistical ensembles of
complex, quaternion, and real matrices. J. Math.
Phys. 6, 440-449.
Math. Review 30 #3936
-
Helgason, S. Geometric analysis on symmetric
spaces, Volume~39 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 1994.
Math. Review 96h:43009
-
Hough, J., Krishnapur, M., Peres, Y., and Virag, B.
(2006) Determinantal processes and independence. Probab. Surveys. 3, 206-229.
Math. Review 2006m:60068
-
Math. Review 2002m:82028
-
Krishnapur, M. (2006) Zeros of Random Analytic
Functions. Ph. D. thesis. Univ. of Ca., Berkeley. arXiv:math.PR/0607504 .
-
Lyons, R. (2003).
Determinantal probability measures.
Publ. Math. Inst. Hautes Etudes Sci. 98, 167-212.
Math. Review 2005b:60024
-
Lyons, R., and Steif, J. (2003).
Stationary determinantal processes:
phase multiplicity, Bernoullicity, entropy, and domination.
Duke Math J. 120, 515-575.
Math. Review 2004k:60100
-
Macchi, O. (1975).
The coincidence approach to stochastic point processes.
Adv. Appl. Probab. 7, 83-122.
Math. Review 52 #1876
-
Peres, Y. and Virag, B. (2005). Zeros of the i.i.d.
Gaussian power series: a conformally invariant
determinantal process. Acta. Math., 194, 1-35.
-
Rider, B., and Virag, B. (2007). The noise in the
circular law and the Gaussian free field. Int. Math.
Res. Notices, 2007, article ID rnm006, 32pp.
-
Sheffield, S. (2005). Gaussian free fields for
mathematicians. Preprint, arXiv:math.PR/0312099.
-
Shirai, T. and Takahashi, Y. (2003) Random point
fields associated with certain Fredholm determinants. II.
Fermion shifts and their ergodic and Gibbs properties. Ann. Probab. 31 no. 3, 1533-1564.
Math. Review 2004k:60146
-
Sodin, M. and Tsielson, B. (2006) Random complex
zeroes, I. Asymptotic normalitiy. Israel Journal of
Mathematics 152, 125-149.
Math. Review 2005k:60079
-
Soshnikov, A. (2000) Determinantal random fields.
Russian Math. Surveys 55, no. 5, 923-975.
Math. Review 2002f:60097
-
Soshnikov, A (2000). Central Limit Theorem for local
linear statistics in classical compact groups and related
combinatorial identities. Ann. Probab. 28,
1353-1370.
Math. Review 2002f:15035
-
Soshnikov, A (2002). Gaussian limits for
determinantal random point fields. Ann. Probab. 30, 171-181.
Math. Review 2003e:60106
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|