Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 15(2010) > Paper 44 open journal systems 


Universal Behavior of Connectivity Properties in Fractal Percolation Models

Erik I Broman, Chalmers University of Technology
Federico Camia, Vrije Universiteit Amsterdam


Abstract
Partially motivated by the desire to better understand the connectivity phase transition in fractal percolation, we introduce and study a class of continuum fractal percolation models in dimension d ≥ 2. These include a scale invariant version of the classical (Poisson) Boolean model of stochastic geometry and (for d=2) the Brownian loop soup introduced by Lawler and Werner. The models lead to random fractal sets whose connectivity properties depend on a parameter λ. In this paper we mainly study the transition between a phase where the random fractal sets are totally disconnected and a phase where they contain connected components larger than one point. In particular, we show that there are connected components larger than one point at the unique value of λ that separates the two phases (called the critical point). We prove that such a behavior occurs also in Mandelbrot's fractal percolation in all dimensions d ≥ 2. Our results show that it is a generic feature, independent of the dimension or the precise definition of the model, and is essentially a consequence of scale invariance alone. Furthermore, for d=2 we prove that the presence of connected components larger than one point implies the presence of a unique, unbounded, connected component.


Full text: PDF

Pages: 1394-1414

Published on: September 19, 2010


Bibliography
  1. M. Aizenmann and G. Grimmett, Strict Monotonicity for Critical Points in Percolation and Ferromagnetic Models, J. Stat. Phys. 63 (1991) 817-835 Math. Review 92i:82060
  2. H. Bierme and A. Estrade, Covering the whole space with Poisson random ball in preparation (2010)
  3. E.I. Broman and F. Camia, Large-$N$ limit of crossing probabilities, discontinuity, and asymptotic behavior of threshold values in Mandelbrot's fractal percolation process, Electron. J. Probab. 13 (2008) 980-999 Math. Review 2009g:60130
  4. R.M. Burton and M. Keane, Density and Uniqueness in Percolation, Comm. Math. Phys. 121 (1989) 501-505 Math. Review 90g:60090
  5. J.T. Chayes and L. Chayes, The large-$N$ limit of the threshold values in Mandelbrot's fractal percolation process, J.Phys.A: Math. Gen. 22 (1989) L501--L506 Math. Review 90h:82044
  6. J.T. Chayes, L. Chayes and R. Durrett, Connectivity Properties of Mandelbrot's Percolation Process, Probab. Theory Relat. Fields 77 (1988) 307-324 Math. Review 89d:60193
  7. J.T. Chayes, L. Chayes, E. Grannan and G. Swindle, Phase transitions in Mandelbrot's percolation process in three Probab. Theory Relat. Fields 90 (1991) 291-300 Math. Review 93a:60156
  8. L. Chayes, Aspects of the fractal percolation process, Progress in Probability 37 (1995) 113-143 Math. Review 97g:60131
  9. F.M. Dekking and G.R. Grimmett, Superbranching processes and projections of random Cantor sets, Probab. Theory Relat. Fields 78 (1988) 335-355 Math. Review 89f:60099
  10. F.M. Dekking and R.W.J. Meester, On the structure of Mandelbrot's percolation process and other Random Cantor sets J. Stat. Phys. 58 (1990) 1109-1126 Math. Review 91c:60140
  11. K.J. Falconer Fractal Geometry Second edition, Wiley, Chichester, 2003. Math. Review 2006b:28001
  12. K.J. Falconer and G.R. Grimmett, The critical point of fractal percolation in three and more dimensions, J. Phys. A: Math. Gen. 24 (1991) L491--L494 Math. Review 92g:82053
  13. K.J. Falconer and G.R. Grimmett, On the geometry of Random Cantor Sets and Fractal Percolation, J. Theor. Probab. 5 (1992) 465-485 Math. Review 94b:60115
  14. B. Freivogel and M. Kleban, A Conformal Field Theory for Eternal Inflation? J. High Energy Phys. 12 (2009) 019 Math. Review number not available
  15. G. Grimmett, Percolation Second edition, Springer-Verlag, Berlin 1999 Math. Review 2001a:60114
  16. S. Janson, Bounds of the distribution of extremal values of a scanning process, Stochastic Process. Appl. 18 (1984) 313-328. Math. Review 86f:60066
  17. G.F. Lawler, Conformally Invariant Processes in the Plane Mathematical Surveys and Monographs, 114. American Mathematical Society, Providence, 2005 Math. Review 2006i:60003
  18. G.F. Lawler and W. Werner, The Brownian loop soup, Probab. Theory Relat. Fields 128 (2004) 565-588. Math. Review 2005f:60176
  19. T.M. Liggett Stochastic Interacting Systems: Contact, Voter and Exclusion Processes Springer-Verlag, Berlin, 1999 Math. Review 2001g:60247
  20. T.M. Liggett, R.H. Schonmann and A.M. Stacey, Domination by product measures, Ann. Probab. 25 (1997) 71-95. Math. Review 98f:60095)
  21. B.B.~Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid Mech. 62 (1974) 331-358. Math. Review number not available.
  22. B.B. Mandelbrot, The Fractal Geometry of Nature W.H. Freeman, San Francisco (1983) Math. Review 84h:00021
  23. R.W.J. Meester, Connectivity in fractal percolation, 5 (1992) 775-789 Math. Review 93m:60201
  24. R. Meester and R. Roy, Continuum Percolation Cambridge University Press, New York, 1996. Math. Review 98d:60193
  25. M.V.Menshikov, S.Yu. Popov and M. Vachkovskaia, On the connectivity properties of the complementary set in fractal percolation models, Probab. Theory Relat. Fields 119 (2001) 176-186 Math. Review 2002d:60085
  26. M.V.Menshikov, S.Yu. Popov and M. Vachkovskaia, On a multiscale continuous percolation model with unbounded defects, Bull. Braz. Math. Soc. 34 (2003) 417-435. Math. Review 2005c:60132
  27. S.~Nacu and W.~Werner, Random soups, carpets and dimensions, J. London Math. Soc. to appear (2010) Math. Review number not available.
  28. M.E. Orzechowski, On the Phase Transition to Sheet Percolation in Random Cantor Sets J. Stat. Phys. 82 (1996) 1081-1098 Math. Review 97e:82022
  29. R. Schneider and W. Weil, Stochastic and Integral Geometry Springer-Verlag, Berlin, 2008. Math. Review 2010g:60002
  30. S. Sheffield and W. Werner, Conformal Loop Ensembles: Construction via Loop-soups, preprint arXiv:1006.2373v1
  31. S. Sheffield and W. Werner, Conformal Loop Ensembles: The Markovian Characterization, preprint arXiv:1006.2374v1
  32. D. Stoyan, W.S. Kendall and J. Mecke, Stochastic geometry and its applications Second edition, Wiley, Chichester, 1985. Math. Review 88j:60034a
  33. W. Werner, SLEs as boundaries of clusters of Brownian loops, C. R. Math. Acad. Sci. Paris 337 (2003) 481-486 Math. Review 2005b:60221
  34. W. Werner, Some recent aspects of random conformally invariant systems, Les Houches Scool Proceedings: Session LXXXII, Mathematical Statistical Physics (2006) 57-98 Math. Review number not available.
  35. D.G. White, On fractal percolation in ${mathbb R}^2$, Statist. Probab. Lett. 45 (1999) 187-190 Math. Review 2000i:60117
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489