![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Universal Behavior of Connectivity Properties in Fractal Percolation Models
|
Erik I Broman, Chalmers University of Technology Federico Camia, Vrije Universiteit Amsterdam |
Abstract
Partially motivated by the desire to better understand the connectivity
phase transition in fractal percolation, we introduce and study a class
of continuum fractal percolation models in dimension d ≥ 2. These
include a scale invariant version of the classical (Poisson) Boolean model
of stochastic geometry and (for d=2) the Brownian loop soup introduced
by Lawler and Werner.
The models lead to random fractal sets whose connectivity properties
depend on a parameter λ. In this paper we mainly study the
transition between a phase where the random fractal sets are totally
disconnected and a phase where they contain connected components
larger than one point. In particular, we show that there are connected
components larger than one point at the unique value of λ
that separates the two phases (called the critical point). We prove that
such a behavior occurs also in Mandelbrot's fractal percolation in all
dimensions d ≥ 2. Our results show that it is a generic feature,
independent of the dimension or the precise definition of the model,
and is essentially a consequence of scale invariance alone.
Furthermore, for d=2 we prove that the presence of connected components
larger than one point implies the presence of a unique, unbounded,
connected component.
|
Full text: PDF
Pages: 1394-1414
Published on: September 19, 2010
|
Bibliography
-
M. Aizenmann and G. Grimmett, Strict Monotonicity for
Critical Points in Percolation and Ferromagnetic Models,
J. Stat. Phys. 63 (1991) 817-835
Math. Review 92i:82060
- H. Bierme and A. Estrade, Covering the whole space with Poisson random ball
in preparation
(2010)
- E.I. Broman and F. Camia, Large-$N$ limit of crossing
probabilities, discontinuity, and asymptotic behavior of threshold values
in Mandelbrot's fractal percolation process,
Electron. J. Probab.
13
(2008) 980-999
Math. Review 2009g:60130
-
R.M. Burton and M. Keane, Density and Uniqueness
in Percolation,
Comm. Math. Phys.
121
(1989) 501-505
Math. Review 90g:60090
- J.T. Chayes and L. Chayes, The large-$N$ limit of the
threshold values in Mandelbrot's fractal percolation process,
J.Phys.A: Math. Gen.
22
(1989) L501--L506
Math. Review 90h:82044
- J.T. Chayes, L. Chayes and R. Durrett, Connectivity
Properties of Mandelbrot's Percolation Process,
Probab. Theory Relat. Fields
77
(1988) 307-324
Math. Review 89d:60193
- J.T. Chayes, L. Chayes, E. Grannan and G. Swindle,
Phase transitions in Mandelbrot's percolation process in three
Probab. Theory Relat. Fields
90
(1991) 291-300
Math. Review 93a:60156
- L. Chayes, Aspects of the fractal percolation process,
Progress in Probability
37
(1995) 113-143
Math. Review 97g:60131
- F.M. Dekking and G.R. Grimmett, Superbranching processes
and projections of random Cantor sets,
Probab. Theory Relat. Fields
78
(1988) 335-355
Math. Review 89f:60099
- F.M. Dekking and R.W.J. Meester, On the structure of
Mandelbrot's percolation process and other Random Cantor sets
J. Stat. Phys.
58
(1990) 1109-1126
Math. Review 91c:60140
- K.J. Falconer
Fractal Geometry
Second edition, Wiley, Chichester, 2003.
Math. Review 2006b:28001
- K.J. Falconer and G.R. Grimmett, The critical point of
fractal percolation in three and more dimensions,
J. Phys. A: Math. Gen.
24
(1991) L491--L494
Math. Review 92g:82053
- K.J. Falconer and G.R. Grimmett, On the geometry of Random Cantor
Sets and Fractal Percolation,
J. Theor. Probab.
5
(1992) 465-485
Math. Review 94b:60115
-
B. Freivogel and M. Kleban, A Conformal Field Theory for Eternal Inflation?
J. High Energy Phys.
12
(2009) 019
Math. Review number not available
- G. Grimmett,
Percolation
Second edition, Springer-Verlag, Berlin 1999
Math. Review 2001a:60114
- S. Janson, Bounds of the distribution of extremal values of a
scanning process,
Stochastic Process. Appl.
18 (1984) 313-328.
Math. Review 86f:60066
- G.F. Lawler,
Conformally Invariant Processes in the Plane
Mathematical Surveys and Monographs, 114. American Mathematical Society, Providence, 2005
Math. Review 2006i:60003
- G.F. Lawler and W. Werner, The Brownian loop soup,
Probab. Theory Relat. Fields
128 (2004) 565-588.
Math. Review 2005f:60176
- T.M. Liggett
Stochastic Interacting Systems:
Contact, Voter and Exclusion Processes
Springer-Verlag, Berlin, 1999
Math. Review 2001g:60247
- T.M. Liggett, R.H. Schonmann and A.M. Stacey, Domination by product measures,
Ann. Probab.
25 (1997) 71-95.
Math. Review 98f:60095)
- B.B.~Mandelbrot, Intermittent turbulence in self-similar
cascades: divergence of high moments and dimension of the carrier,
J. Fluid Mech.
62 (1974) 331-358.
Math. Review number not available.
- B.B. Mandelbrot,
The Fractal Geometry of Nature
W.H. Freeman, San Francisco (1983)
Math. Review 84h:00021
- R.W.J. Meester, Connectivity in fractal percolation,
5 (1992) 775-789
Math. Review 93m:60201
- R. Meester and R. Roy,
Continuum Percolation
Cambridge University Press, New York, 1996.
Math. Review 98d:60193
- M.V.Menshikov, S.Yu. Popov and M. Vachkovskaia,
On the connectivity properties of the complementary set in fractal percolation models,
Probab. Theory Relat. Fields
119 (2001) 176-186
Math. Review 2002d:60085
- M.V.Menshikov, S.Yu. Popov and M. Vachkovskaia,
On a multiscale continuous percolation model with unbounded defects,
Bull. Braz. Math. Soc.
34 (2003) 417-435.
Math. Review 2005c:60132
- S.~Nacu and W.~Werner, Random soups, carpets and dimensions,
J. London Math. Soc.
to appear (2010)
Math. Review number not available.
- M.E. Orzechowski, On the Phase Transition to
Sheet Percolation in Random Cantor Sets
J. Stat. Phys.
82 (1996) 1081-1098
Math. Review 97e:82022
- R. Schneider and W. Weil,
Stochastic and Integral Geometry
Springer-Verlag, Berlin, 2008.
Math. Review 2010g:60002
- S. Sheffield and W. Werner, Conformal Loop Ensembles: Construction via Loop-soups,
preprint arXiv:1006.2373v1
- S. Sheffield and W. Werner, Conformal Loop Ensembles: The Markovian Characterization,
preprint arXiv:1006.2374v1
- D. Stoyan, W.S. Kendall and J. Mecke,
Stochastic geometry and its applications
Second edition, Wiley, Chichester, 1985.
Math. Review 88j:60034a
- W. Werner, SLEs as boundaries of clusters of Brownian loops,
C. R. Math. Acad. Sci. Paris
337 (2003) 481-486
Math. Review 2005b:60221
- W. Werner,
Some recent aspects of random conformally invariant systems,
Les Houches Scool Proceedings: Session LXXXII, Mathematical Statistical Physics
(2006) 57-98
Math. Review number not available.
- D.G. White, On fractal percolation in ${mathbb R}^2$,
Statist. Probab. Lett.
45 (1999) 187-190
Math. Review 2000i:60117
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|