![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Stationary Solutions and Forward Equations for Controlled and Singular Martingale Problems
|
Thomas G. Kurtz, University of Wisconsin, Madison Richard H. Stockbridge, University of Kentucky |
Abstract
Stationary distributions of Markov
processes can typically be characterized as probability measures that
annihilate the generator in the sense that
for
;
that is, for each such
,
there exists a stationary solution of the martingale problem for
A
with marginal distribution
.
This result is extended to models corresponding to
martingale problems that include
absolutely continuous and singular (with respect to time) components and
controls. Analogous results for the forward equation follow as a corollary.
|
Full text: PDF
Pages: 1-52
Published on: January 17, 2001
|
Bibliography
-
Bhatt, Abhay G.; Borkar, Vivek S.
Occupation measures for controlled Markov processes: characterization and
optimality. Ann. Probab. 24 (1996), no. 3,
1531-1562.
Math. Reviews number
97i:90105
-
Bhatt, Abhay G.; Karandikar,
Rajeeva L. Invariant measures and evolution equations for Markov
processes characterized via martingale problems. Ann. Probab. 21
(1993), no. 4, 2246-2268.
Math. Reviews number
95d:60120
- Bhatt, Abhay G.; Kallianpur, G.; Karandikar,
Rajeeva L. Uniqueness and robustness of solution of measure-valued
equations of nonlinear filtering. Ann. Probab. 23 (1995),
no. 4, 1895-1938.
Math. Reviews number
97a:60061
- Bhatt, A. G.; Karandikar, R. L. Evolution
equations for Markov processes: application to the white-noise theory of
filtering. Appl. Math. Optim. 31 (1995), no. 3,
327-348.
Math. Reviews number
95k:60181
- Bhatt, Abhay G.; Karandikar, Rajeeva L.
Characterization of the optimal filter: the non-Markov case. Stochastics
Stochastics Rep. 66 (1999), no. 3-4, 177-204.
Math. Reviews number
2000e:60063
- Borkar, Vivek S.; Ghosh, Mrinal K. Ergodic
control of multidimensional diffusions. I. The existence results. SIAM J.
Control Optim. 26 (1988), no. 1, 112-126.
Math. Reviews number
89h:93054
- Dai, J. G.; Harrison, J. M. Steady-state
analysis of RBM in a rectangle: numerical methods and a queueing application. Ann.
Appl. Probab. 1 (1991), no. 1, 16-35.
Math. Reviews number
92e:60154
- Davis, M. H. A.; Norman, A. R. Portfolio
selection with transaction costs.
Math. Oper. Res. 15 (1990),
no. 4, 676-713.
Math. Reviews number
92b:90036
- Donnelly, Peter; Kurtz, Thomas G. Particle
representations for measure-valued population models. Ann. Probab. 27
(1999), no. 1, 166-205.
Math. Reviews number
2000f:60108
- Echeverrķa, Pedro. A criterion for invariant measures of
Markov processes. Z. Wahrsch. Verw. Gebiete 61 (1982),
no. 1, 1-16.
Math. Reviews number
84a:60088
- Ethier, Stewart N.; Kurtz, Thomas G.
Markov processes. Characterization and convergence. Wiley Series in Probability
and Mathematical Statistics: Probability and Mathematical Statistics. John
Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8
Math. Reviews number
88a:60130
- Jacod, Jean; Shiryaev, Albert N. Limit
theorems for stochastic processes. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences],
288. Springer-Verlag,
Berlin-New York, 1987. xviii+601 pp. ISBN: 3-540-17882-1
Math. Reviews number
89k:60044
- Jakubowski, Adam. A non-Skorohod topology on the Skorohod
space. Electron. J. Probab. 2 (1997), no. 4, 21 pp.
(electronic).
Math. Reviews number
98k:60046
- Karatzas, Ioannis. A class of singular stochastic control
problems. Adv. in Appl. Probab. 15 (1983), no. 2,
225-254.
Math. Reviews number
84g:93084
- Kurtz, Thomas G. Martingale problems for constrained Markov
processes. Recent advances in stochastic calculus. Papers from the
Distinguished Lecture Series on Stochastic Calculus held at the University of
Maryland, College Park, Maryland, 1987. Edited by John S. Baras and Vincent
Mirelli. Progress in Automation and Information Systems. Springer-Verlag,
New York, 1990. x+217 pp. ISBN: 0-387-97273-0
Math. Reviews number
94f:93001
- Kurtz, Thomas G. A control formulation for constrained Markov
processes. Mathematics of random media (Blacksburg, VA, 1989), 139-150,
Lectures in Appl. Math., 27, Amer.
Math. Soc., Providence, RI, 1991.
Math. Reviews number
92h:60122
- Kurtz, Thomas G. Random time changes and convergence in
distribution under the Meyer-Zheng conditions. Ann. Probab. 19
(1991), no. 3, 1010-1034.
Math. Reviews number
92m:60033
- Kurtz, Thomas G. Averaging for martingale problems and
stochastic approximation. Applied stochastic analysis (New Brunswick, NJ,
1991), 186-209, Lecture Notes in Control and Inform. Sci., 177, Springer,
Berlin, 1992.
Math. Reviews number
93h:60070
- Kurtz, Thomas G. Martingale problems for conditional
distributions of Markov processes. Electron. J. Probab. 3 (1998),
no. 9, 29 pp. (electronic).
Math. Reviews number
99k:60186
- Kurtz, T. G.; Ocone, D. L. Unique
characterization of conditional distributions in nonlinear filtering. Ann.
Probab. 16 (1988), no. 1, 80-107.
Math. Reviews number
88m:93146
- Kurtz, Thomas G.; Stockbridge, Richard H.
Existence of Markov controls and characterization of optimal Markov controls. SIAM
J. Control Optim. 36 (1998), no. 2, 609-653
(electronic).
Math. Reviews number
99b:93051
- Kurtz, Thomas G.; Stockbridge, Richard H. Martingale
problems and linear programs for singular control, Thirty-seventh annual
Allerton conference on communication, control and computing (Monticello, Ill.,
1999), 11-20, Univ. Illinois, Urbana-Champaign, Ill.
Math. Reviews number not available.
- Royden, H. L. Real analysis. Second edition. Macmillan
Publishing Company, New York, 1968.
Math. Reviews number
90g:00004 (third ed.)
- Shreve, Steven E. An introduction to singular stochastic
control. Stochastic differential systems, stochastic control theory and
applications (Minneapolis, Minn., 1986), 513-528, IMA Vol.
Math. Appl., 10, Springer, New York-Berlin, 1988.
Math. Reviews number
89d:93122
- Shreve, S. E.; Soner, H. M. Optimal
investment and consumption with transaction costs. Ann. Appl. Probab. 4
(1994), no. 3, 609-692.
Math. Reviews number
95g:90013
- Soner, H. Mete; Shreve, Steven E.
Regularity of the value function for a two-dimensional singular stochastic
control problem. SIAM J. Control Optim. 27 (1989),
no. 4, 876-907.
Math. Reviews number
90h:93124
- Stockbridge, Richard H. Time-average control of martingale
problems: a linear programming formulation. Ann. Probab. 18 (1990),
no. 1, 206-217.
Math. Reviews number
91b:49029
- Stockbridge, Richard H. Time-average control of martingale
problems: existence of a stationary solution. Ann. Probab. 18 (1990),
no. 1, 190-205.
Math. Reviews number
91b:49028
- Weiss, A. Invariant measures of diffusions in bounded domains, Ph.D.
dissertation, New York University, 1981.
Math. Reviews number not avaiable.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|