|
|
|
| | | | | |
|
|
|
|
|
Eigenvalues of Random Wreath Products
|
Steven N. Evans, University of California at Berkeley |
Abstract
Consider a uniformly chosen element $X_n$ of
the $n$-fold wreath product $Gamma_n = G wr G wr cdots wr G$, where
$G$ is a finite permutation group acting transitively on some set of size
$s$. The eigenvalues of $X_n$ in the natural $s^n$-dimensional permutation
representation (the composition representation) are investigated by considering
the random measure $Xi_n$ on the unit circle that assigns mass $1$ to
each eigenvalue. It is shown that if $f$ is a trigonometric polynomial,
then $lim_{n rightarrow infty} P{int f dXi_n ne s^n int f
dlambda}=0$, where $lambda$ is normalised Lebesgue measure on the unit
circle. In particular, $s^{-n} Xi_n$ converges weakly in probability to
$lambda$ as $n rightarrow infty$. For a large class of test functions
$f$ with non-terminating Fourier expansions, it is shown that there exists
a constant $c$ and a non-zero random variable $W$ (both depending on $f$)
such that $c^{-n} int f dXi_n$ converges in distribution as $n rightarrow
infty$ to $W$. These results have applications to Sylow $p$-groups
of symmetric groups and autmorphism groups of regular rooted trees.
|
Full text: PDF
Pages: 1-15
Published on: July 31, 2001
|
Bibliography
- M. Abert and P. Diaconis.
One-two-tree(s) and Sylow subgroups of S_n.
Technical report, Department of Mathematics, Stanford University, 2002.
- M. Abert and B. Virag.
Groups acting on regular trees: probability and Hausdorff dimension.
Technical report, Department of Mathematics, M.I.T., 2002.
- R.A. Bailey, Cheryl E. Praeger, C.A. Rowley, and T.P. Speed.
Generalized wreath products of permutation groups.
Proc. London Math. Soc. (3), 47:69-82, 1983.
MR85b:20005
- Hyman Bass, Maria Victoria Otero-Espinar, Daniel Rockmore, and Charles Tresser.
Cyclic renormalization and automorphism groups of rooted trees.
Springer-Verlag, Berlin 1996.
MR97k:58058
- Persi Diaconis and Steven N. Evans.
Linear functionals of eigenvalues of random matrices.
Trans. Amer. Math. Soc., 353(7):2615-2633, 2001.
- P. Diaconis and M. Shahshahani.
On the eigenvalues of random matrices.
J. Appl. Probab., 31A:49-62, 1994.
MR95m:60011
- Knut Dale and Ivar Skau.
The (generalized) secretary's packet problem and the Bell numbers.
Discrete Math., 137(1-3):357-360, 1995.
MR96a:05007
- A. Dyubina.
Characteristics of random walks on the wreath products of groups.
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.
(POMI), 256(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 3):31-37, 264, 1999.
MR2000g:60012
- A. G. Dyubina.
An example of the rate of departure to infinity for a random walk on a group.
Uspekhi Mat. Nauk, 54(5(329)):159-160, 1999.
MR2001g:60013
- James Allen Fill and Clyde H. Schoolfield, Jr.
Mixing times for Markov chains on wreath products and related homogeneous spaces.
Electron. J. Probab., 6:no. 11, 22 pp. (electronic), 2001.
- C. P. Hughes, J. P. Keating, and Neil O'Connell.
On the characteristic polynomial of a random unitary matrix.
Comm. Math. Phys., 220(2):429-451, 2001.
- B. M. Hambly, P. Keevash, N. O'Connell, and D. Stark.
The characteristic polynomial of a random permutation matrix.
Stochastic Process. Appl., 90(2):335-346, 2000.
- Gordon James and Adalbert Kerber.
The representation theory of the symmetric group.
Addison-Wesley Publishing Co., Reading, Mass., 1981.
With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson.
MR83k:20003
- K. Johansson.
On random matrices from the compact classical groups.
Ann. of Math. (2), 145:519-545, 1997.
MR98e:60016
- Adalbert Kerber.
Representations of permutation groups. I.
Springer-Verlag, Berlin, 1971.
Lecture Notes in Mathematics, Vol. 240.
MR48:4098
- Adalbert Kerber.
Representations of permutation groups. II.
Springer-Verlag, Berlin, 1975.
Lecture Notes in Mathematics, Vol. 495.
MR53:13376
- J. P. Keating and N. C. Snaith.
Random matrix theory and L-functions at s=1/2.
Comm. Math. Phys., 214(1):91-110, 2000.
- J. P. Keating and N. C. Snaith.
Random matrix theory and zeta(1/2+it).
Comm. Math. Phys., 214(1):57-89, 2000.
- V. A. Kaimanovich and A. M. Vershik.
Random walks on discrete groups: boundary and entropy.
Ann. Probab., 11(3):457-490, 1983.
MR85d:60024
- H.C. Longuet-Higgins.
The symmetry groups of non-rigid molecules.
Molecular Physics, 6:445-460, 1963.
- Russell Lyons, Robin Pemantle, and Yuval Peres.
Random walks on the lamplighter group.
Ann. Probab., 24(4):1993-2006, 1996.
MR97j:60014
- Madan Lal Mehta.
Random matrices.
Academic Press Inc., Boston, MA, second edition, 1991.
MR92f:82002
- P. P. Palfy and M. Szalay.
The distribution of the character degrees of the symmetric p-groups.
Acta Math. Hungar., 41(1-2):137-150, 1983.
MR84h:20073
- P. P. Palfy and M. Szalay.
On a problem of P. Turan concerning Sylow subgroups.
In Studies in pure mathematics, pages 531-542. Birkhauser, Basel, 1983.
MR87d:11073
- P. P. Palfy and M. Szalay.
Further probabilistic results on the symmetric p-groups.
Acta Math. Hungar., 53(1-2):173-195, 1989.
MR90g:11109
- Christophe Pittet and Laurent Saloff-Coste.
Amenable groups, isoperimetric profiles and random walks.
In Geometric group theory down under (Canberra, 1996),
pages 293-316. de Gruyter, Berlin, 1999.
MR2001d:20041
- E.M. Rains.
High powers of random elements of compact Lie groups.
Probab. Theory Related Fields, 107:219-241, 1997.
MR98b:15026
- K.L. Wieand.
Eigenvalue distributions of random matrices in the permutation
group and compact Lie groups.
PhD thesis, Harvard University, 1998.
- Kelly Wieand.
Eigenvalue distributions of random permutation matrices.
Ann. Probab., 28(4):1563-1587, 2000.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|