Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 7 (2002) > Paper 18 open journal systems 


On the Convergence of Stochastic Integrals Driven by Processes Converging on account of a Homogenization Property

Antoine Lejay, INRIA Lorraine


Abstract
We study the limit of functionals of stochastic processes for which an homogenization result holds. All these functionals involve stochastic integrals. Among them, we consider more particularly the Levy area and those giving the solutions of some SDEs. The main question is to know whether or not the limit of the stochastic integrals is equal to the stochastic integral of the limit of each of its terms. In fact, the answer may be negative, especially in presence of a highly oscillating first-order differential term. This provides us some counterexamples to the theory of good sequence of semimartingales.




Full text: PDF

Pages: 1-18

Published on: September 19, 2002


Bibliography
  1. A. Bensoussan, J.L. Lions, and G. Papanicolaou. Asymptotic Analysis for Periodic Structures. North-Holland, 1978. Math Review 82h:35001.
  2. S.N. Ethier and T.G. Kurtz. Markov Processes, Characterization and Convergence. Wiley, 1986. Math Review 88a:60130.
  3. J. Jacod and A.N. Shiryaev. Limit Theorems for Stochastic Processes. Springer-Verlag, 1987. Math Review 89k:60044.
  4. I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag, 2 edition, 1991. Math Review 92h:60127.
  5. T.G. Kurtz and P. Protter. Weak convergence of stochastic integrals and differential equations. In D. Talay and L. Tubaro, editors, Probabilistic Models for Nonlinear Partial Differential Equations, Montecatini Terme, 1995, vol. 1629 of Lecture Notes in Mathematics, pp. 1—41. Springer-Verlag, 1996. Math Review 98h:60073.
  6. J. L. Lebowitz and H. Rost. The Einstein relation for the displacement of a test particle in a random environment. Stochastic Process. Appl., 54:183—196, 1994. Math Review 97b:60171.
  7. A. Lejay. Homogenization of divergence-form operators with lower-order terms in random media. Probab. Theory Related Fields, 120(2):255—276, 2001. <DOI: 10.1007/s004400100135>. Math Review 2002g:35023.
  8. A. Lejay. A probabilistic approach of the homogenization of divergence-form operators in periodic media. Asymptot. Anal., 28(2):151—162, 2001. Math Review 1 869 029.
  9. A. Lejay. An introduction to rough paths. In Séminaire de Probabilités XXXVII, Lecture Notes in Mathematics. Springer-Verlag, 2003. To appear. MR number not available.
  10. A. Lejay and T.J. Lyons. On the importance of the Lévy area for systems controlled by converging stochastic processes. Application to homogenization. In preparation, 2002. MR number not available.
  11. T.J. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14(2):215—310, 1998. Math Review 2000c:60089.
  12. T. Lyons and Z. Qian. System Control and Rough Paths. Oxford Mathematical Monographs. Oxford University Press, 2002. MR number not available.
  13. S. Olla. Homogenization of diffusion processes in random fields. Cours de l'École doctorale de l'École Polytechnique (Palaiseau, France), 1994. <www.cmap.polytechnique.fr/~olla/pubolla.html>. MR number not available.
  14. É. Pardoux. Homogenization of linear and semilinear second order PDEs with periodic coefficients: a probabilistic approach. J. Funct. Anal., 167(2):498—520, 1999. <DOI: 10.1006/jfan.1999.3441>. Math Review 2000j:60079.
  15. É. Pardoux and A.Y. Veretennikov. Averaging of backward SDEs, with application to semi-linear PDEs. Stochastics, 60(3—4):255—270, 1997. Math Review 98d:60125.
  16. É. Pardoux and A.Y. Veretennikov. On Poisson equation and diffusion approximation I. Ann. Probab., 29(3):1061—1085, 2001. Math Review 1872736.
  17. É. Pardoux and A.Y. Veretennikov. On poisson equation and diffusion approximation II. To appear in Ann. Probab., 2002. MR number not available.
  18. R.G. Pinsky. Second order elliptic operators with periodic coefficients: criticality theory, perturbations, and positive harmonic functions. J. Funct. Anal., 129(1):80—107, 1995. Math Review 96b:35038.
  19. R.G. Pinsky. Positive Harmonic Functions and Diffusion. Cambridge University Press, 1996. Math Review 96m:60179.
  20. I. Szyszkowski. Weak convergence of stochastic integrals. Theory of Probab. App., 41(4):810—814, 1997. Math Review 2000c:60082.
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489