Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 13 (2008) > Paper 11 open journal systems 


Strictly stable distributions on convex cones

Youri Davydov, University Lille 1
Ilya Molchanov, University of Bern
Sergei Zuyev, University of Strathclyde


Abstract
Using the LePage representation, a symmetric alpha-stable random element in Banach space B with alpha from (0,2) can be represented as a sum of points of a Poisson process in B. This point process is union-stable, i.e. the union of its two independent copies coincides in distribution with the rescaled original point process. This shows that the classical definition of stable random elements is closely related to the union-stability property of point processes. These concepts make sense in any convex cone, i.e. in a semigroup equipped with multiplication by numbers, and lead to a construction of stable laws in general cones by means of the LePage series. We prove that random samples (or binomial point processes) in rather general cones converge in distribution in the vague topology to the union-stable Poisson point process. This convergence holds also in a stronger topology, which implies that the sums of points converge in distribution to the sum of points of the union-stable point process. Since the latter corresponds to a stable law, this yields a limit theorem for normalised sums of random elements with alpha-stable limit for alpha from (0,1). By using the technique of harmonic analysis on semigroups we characterise distributions of alpha-stable random elements and show how possible values of the characteristic exponent alpha relate to the properties of the semigroup and the corresponding scaling operation, in particular, their distributivity properties. It is shown that several conditions imply that a stable random element admits the LePage representation. The approach developed in the paper not only makes it possible to handle stable distributions in rather general cones (like spaces of sets or measures), but also provides an alternative way to prove classical limit theorems and deduce the LePage representation for strictly stable random vectors in Banach spaces.


Full text: PDF

Pages: 259-321

Published on: February 22, 2008


Bibliography
  1. C.D. Aliprantis and K.C. Border. Infinite-dimensional analysis. A hitchhiker's guide. Studies in Economic Theory, 4 (1994) Springer-Verlag, Berlin Math Review 96k:46001
  2. A. Araujo and E. Giné. The central limit theorem for real and Banach valued random variables. (1980) John Wiley & Sons, New York-Chichester-Brisbane. Math. Review 83e:60003
  3. F. Baccelli, G. Cohen, Guy, G.J. Olsder and J.-P. Quadrat. Synchronization and Linearity. An algebra for discrete event systems. (1992) John Wiley & Sons, Ltd., Chichester. Math. Review 94b:93001
  4. Ch. Berg. Positive definite and related functions on semigroups. The analytical and topological theory of semigroups, (1990) 253--278, de Gruyter, Berlin. Math. Review 91i:43007
  5. Ch. Berg, J.P.R. Christensen and P. Ressel. Harmonic analysis on semigroups. Theory of positive definite and related functions. (1984) Springer-Verlag, New York. Math. Review 86b:43001
  6. T.M. Bisgaard. Bochner's theorem for semigroups: a counterexample. Math. Scand. 87 (2000), 272--286. Math. Review 2001j:43008
  7. N. Bourbaki. 'El'ements de math'ematique. Fasc. XXXV. Livre VI: Int'egration. (1969) Hermann, Paris. Math. Review 43 #2183
  8. H. Buchwalter. Les fonctions de Lévy existent! Math. Ann. 274 (1986), 31--34. Math. Review 87e:43007
  9. V.V. Buldygin The convergence of random elements in topological spaces. (1980) (Russian) Naukova Dumka, Kiev. Math. Review 84m:60011
  10. D.J. Daley and D. Vere-Jones, D. An introduction to the theory of point processes. (1988) Springer-Verlag, New York. Math. Review 90e:60060
  11. Yu. Davydov and V. Egorov. On convergence of empirical point processes. Statist. Probab. Lett. 76 (2006), 1836--1844. Math. Review 2007k:60013
  12. Yu. Davydov, V. Paulauskas and A. Rav ckauskas. More on $p$-stable convex sets in Banach spaces. J. Theoret. Probab. 13 (2000), 39--64. Math. Review 2001g:60009
  13. P. Del Moral and M. Doisy. Maslov idempotent probability calculus. I. Theory Probab. Appl. 43 (1999), 562--576 Math. Review 2000h:60003
  14. N. Dunford and J.T. Schwartz. Linear operators. Part I. General theory. (1988) John Wiley & Sons, Inc., New York. Math. Review 90g:47001a
  15. M. Falk, J. Hüsler and R.-D. Reiss. Laws of small numbers: extremes and rare events. Second, revised and extended edition. (2004) Birkhäuser Verlag, Basel. Math. Review 2006d:60001
  16. J. Galambos. The asymptotic theory of extreme order statistics. (1978) John Wiley & Sons, New York-Chichester-Brisbane. Math. Review 80b:60040
  17. E. Giné and M.G. Hahn. Characterization and domains of attraction of $p$-stable random compact sets. Ann. Probab. 13 (1985), 447--468. Math. Review 86j:60031
  18. E. Giné, M.G. Hahn and J. Zinn. Limit theorems for random sets: an application of probability in Banach space results. Probability in Banach spaces, IV (Oberwolfach, 1982), 112--135, Lecture Notes in Math. 990 (1983) Springer, Berli. Math. Review 85d:60019
  19. U. Grenander. Probabilities on algebraic structures. (1968) Almqvist & Wiksell, Stockholm; John Wiley & Sons Inc., New York-London. Math. Review 41 #4598
  20. W. Hazod. Stable probability measures on groups and on vector spaces. A survey. Probability measures on groups, VIII (Oberwolfach, 1985), 304--352, Lecture Notes in Math. 1210 (1986) Springer, Berlin. Math. Review 88e:60015
  21. W. Hazod and E. Siebert. Stable probability measures on Euclidean spaces and on locally compact groups. Structural properties and limit theorems. (2001) Kluwer Academic Publishers, Dordrecht Math. Review 2002m:60011
  22. E. Hewitt and K.A. Ross. Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations. (1963) Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg. Math. Review 28 #158
  23. H. Heyer. Structural aspects in the theory of probability. A primer in probabilities on algebraic-topological structures. (2004) World Scientific Publishing Co., Inc., River Edge, NJ. Math. Review 2006d:60002
  24. G. Högnäs and A. Mukherjea. Probability measures on semigroups. Convolution products, random walks, and random matrices. (1995) Plenum Press, New York. Math. Review 97c:60018
  25. L. Hörmander. Sur la fonction d'appui des ensembles convexes dans un espace localement convexe. Ark. Mat. 3 (1955), 181--186. Math. Review 16,831e
  26. J. Jonasson. Infinite divisibility of random objects in locally compact positive convex cones. J. Multivariate Anal. 65 (1998), 129--138. Math. Review 99e:60011
  27. V.V. Kalashnikov and S.T. Rachev. Mathematical methods for construction of queueing models. (1990) Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA. Math. Review 91e:60274
  28. K. Keimel. Lokal kompakte Kegelhalbgruppen und deren Einbettung in topologische Vektorräume. Math. Z. 99 (1967), 405--428. Math. Review 45 #440
  29. K. Keimel and W. Roth. Ordered cones and approximation. Lecture Notes in Mathematics, 1517 (1992) Springer-Verlag, Berlin. Math. Review 93i:46017
  30. J.L. Kelley. General topology. (1955) D. Van Nostrand Company, Inc., Toronto-New York-London. Math. Review 16,1136c
  31. J.L. Kelley and I. Namioka. Linear topological spaces. (1963) D. Van Nostrand Co., Inc., Princeton, N.J. Math. Review 29 #3851
  32. S. Kotz and S. Nadarajah. Extreme value distributions. Theory and applications. (2000) Imperial College Press, London. Math. Review 2003a:60003
  33. R. LePage, M. Woodroofe and J. Zinn. Convergence to a stable distribution via order statistics. Ann. Probab. 9 (1981), 624--632. Math. Review 82k:60049
  34. W. Linde. Probability in Banach spaces---stable and infinitely divisible distributions. Second edition. (1986) John Wiley & Sons, Ltd., Chichester. Math. Review 87m:60018
  35. V.P. Maslov and S. N. Samborskiui (Editors). Idempotent analysis. (1992) American Mathematical Society, Providence, RI. Math. Review 93h:00018
  36. G. Matheron. Random sets and integral geometry. (1975) John Wileythinspace &thinspace Sons, New York-London-Sydney. Math. Review 52 #6828
  37. K. Matthes, J. Kerstan and J. Mecke. Infinitely divisible point processes. (1978) John Wiley & Sons, Chichester-New York-Brisbane. Math. Review 58 #24538
  38. I. Molchanov. Theory of random sets. (2005) Springer-Verlag London, Ltd., London. Math. Review 2006b:60004
  39. I.S. Molchanov. Limit theorems for unions of random closed sets. Lecture Notes in Mathematics, 1561 (1993). Springer-Verlag, Berlin. Math. Review 96f:60017
  40. I.S. Molchanov. On strong laws of large numbers for random upper semicontinuous functions. J. Math. Anal. Appl. 235 (1999), 349--355. Math. Review 2001c:60050
  41. K.R. Parthasarathy. Probability measures on metric spaces. (1967) Academic Press, Inc., New York-London. Math. Review 37 #2271
  42. S.T. Rachev. Probability metrics and the stability of stochastic models. (1981) John Wiley & Sons, Ltd., Chichester. Math. Review 93b:60012
  43. H. Ratschek and G. Schröder. Representation of semigroups as systems of compact convex sets. Proc. Amer. Math. Soc. 65 (1977), 24--28. Math. Review 58 #6027
  44. S.I. Resnick. Extreme values, regular variation, and point processes. (1987) Springer-Verlag, New York. Math. Review 89b:60241
  45. S.I. Resnick and R. Roy. Superextremal processes, max-stability and dynamic continuous choice. Ann. Appl. Probab. 4 (1994), 791--811. Math. Review 95g:60065
  46. J. Rosi'nski. On series representations of infinitely divisible random vectors. Ann. Probab. 18 (1990), 405--430. Math. Review 91g:60011
  47. I.Z. Ruzsa. Infinite divisibility. Adv. in Math. 69 (1988), 115--132. Math. Review 89g:60051
  48. I.Z. Ruzsa. Infinite divisibility. II. J. Theoret. Probab. 1 (1988), 327--339. Math. Review 89m:60036
  49. G. Samorodnitsky and M.S. Taqqu. Stable non-Gaussian random processes. Stochastic models with infinite variance. (1994) Chapman & Hall, New York. Math. Review 95f:60024
  50. R. Schneider. Convex bodies: the Brunn-Minkowski theory. (1993) Cambridge University Press, Cambridge. Math. Review 94d:52007
  51. A.N. Shiryayev. Probability. (1984) Springer-Verlag, New York. Math. Review 85a:60007
  52. M.F. Smith. The Pontrjagin duality theorem in linear spaces. Ann. of Math. (2) 56 (1952), 248--253. Math. Review 14,183a
  53. N.N. Vakhania, V.I. Tarieladze and S.A. Chobanyan. Probability distributions on Banach spaces. (1987) D. Reidel Publishing Co., Dordrecht. Math. Review 97k:60007
  54. V.M. Zolotarev. One-dimensional stable distributions. (1986) American Mathematical Society, Providence, RI. Math. Review 87k:60002
  55. V.M. Zolotarev. Modern theory of summation of random variables. (1997) VSP, Utrecht. Math. Review 99m:60002
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489