![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Distributions of Invariant Ensembles from the Classical Orthogonal Polynimials: the Discrete Case
|
Michel Ledoux, Université Toulouse |
Abstract
We examine the Charlier, Meixner, Krawtchouk and Hahn
discrete orthogonal polynomial ensembles, deeply investigated by
K. Johansson, using integration by parts for the underlying Markov
operators, differential equations on Laplace
transforms and moment equations. As for the matrix ensembles, equilibrium measures
are described as limits of empirical spectral distributions.
In particular, a new description of the equilibrium measures
as adapted mixtures of the universal arcsine law with an independent uniform
distribution is emphasized.
Factorial moment identities on mean spectral measures may be used towards
small deviation inequalities on the rightmost charges
at the rate given by the Tracy-Widom asymptotics.
|
Full text: PDF
Pages: 1116-1146
Published on: September 9, 2005
|
Bibliography
| Aldous, David; Diaconis, Persi. Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem.
Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 4, 413--432. MR1694204 (2000g:60013) |
Baik, Jinho; Deift, Percy; Johansson, Kurt. On the distribution of the length of the longest increasing subsequence of random permutations.
J. Amer. Math. Soc. 12 (1999), no. 4, 1119--1178. MR1682248 (2000e:05006) |
Baik, Jinho; Deift, Percy; McLaughlin, Ken T.-R.; Miller, Peter; Zhou, Xin. Optimal tail estimates for directed last passage site percolation with geometric random variables.
Adv. Theor. Math. Phys. 5 (2001), no. 6, 1207--1250. MR1926668 (2003h:60141) |
Capitaine, M.; Casalis, M. Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to beta random matrices.
Indiana Univ. Math. J. 53 (2004), no. 2, 397--431. MR2060040 |
Chihara, T. S. An introduction to orthogonal polynomials.
Mathematics and its Applications, Vol. 13.
Gordon and Breach Science Publishers, New York-London-Paris, 1978. xii+249 pp. ISBN: 0-677-04150-0 MR0481884 (58 #1979) |
Collins, B. Product of random projections, Jacobi ensembles and universality
problems arising from free probability.
Probab. Theory Relat. Fields (2005). Math. Review number not available.
|
Deift, P. A. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach.
Courant Lecture Notes in Mathematics, 3. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. viii+273 pp. ISBN: 0-9658703-2-4; 0-8218-2695-6 MR1677884 (2000g:47048) |
Dragnev, P. D.; Saff, E. B. Constrained energy problems with applications to orthogonal polynomials of a discrete variable.
J. Anal. Math. 72 (1997), 223--259. MR1482996 (99f:42048) |
Forrester, P. J.
Log-gases and random matrices (2002). Math. Review number not available.
|
Haagerup, Uffe; Thorbjørnsen, Steen. Random matrices with complex Gaussian entries.
Expo. Math. 21 (2003), no. 4, 293--337. MR2022002 (2005b:46142) |
Johansson, Kurt. Shape fluctuations and random matrices.
Comm. Math. Phys. 209 (2000), no. 2, 437--476. MR1737991 (2001h:60177) |
Johansson, Kurt. Discrete orthogonal polynomial ensembles and the Plancherel measure.
Ann. of Math. (2) 153 (2001), no. 1, 259--296. MR1826414 (2002g:05188) |
Johansson, Kurt. Non-intersecting paths, random tilings and random matrices.
Probab. Theory Related Fields 123 (2002), no. 2, 225--280. MR1900323 (2003h:15035) |
Johnstone, Iain M. On the distribution of the largest eigenvalue in principal components analysis.
Ann. Statist. 29 (2001), no. 2, 295--327. MR1863961 (2002i:62115) |
Koekoek, R. Swarttouw, R. F.
The Askey scheme
of hypergeometric orthogonal polynomials and its q-analogue (1998).
http://aw.twi.tudelft.nl/ $sim$ koekoek/askey/index.html
|
König, W. Orthogonal polynomial ensembles
in probability theory (2004).
|
Kuijlaars, A. B. J.; Van Assche, W. The asymptotic zero distribution of orthogonal polynomials with varying recurrence coefficients.
J. Approx. Theory 99 (1999), no. 1, 167--197. MR1696553 (2000h:42015) |
Ledoux, M. Differential operators and spectral distributions of invariant ensembles from the classical orthogonal polynomials. The continuous case.
Electron. J. Probab. 9 (2004), no. 7, 177--208 (electronic). MR2041832 (2004m:60070) |
Löwe, Matthias; Merkl, Franz. Moderate deviations for longest increasing subsequences: the upper tail.
Comm. Pure Appl. Math. 54 (2001), no. 12, 1488--1520. MR1852980 (2002f:60045) |
Máté, Attila; Nevai, Paul; Totik, Vilmos. Strong and weak convergence of orthogonal polynomials.
Amer. J. Math. 109 (1987), no. 2, 239--281. MR0882423 (88d:42040) |
Mehta, Madan Lal. Random matrices.
Second edition.
Academic Press, Inc., Boston, MA, 1991. xviii+562 pp. ISBN: 0-12-488051-7 MR1083764 (92f:82002) |
Saff, Edward B.; Totik, Vilmos. Logarithmic potentials with external fields.
Appendix B by Thomas Bloom.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 316. Springer-Verlag, Berlin, 1997. xvi+505 pp. ISBN: 3-540-57078-0 MR1485778 (99h:31001) |
Seppäläinen, T. Coupling the totally asymmetric simple exclusion process with a moving interface.
I Brazilian School in Probability (Rio de Janeiro, 1997).
Markov Process. Related Fields 4 (1998), no. 4, 593--628. MR1677061 (2000c:60163) |
Seppäläinen, Timo. Exact limiting shape for a simplified model of first-passage percolation on the plane.
Ann. Probab. 26 (1998), no. 3, 1232--1250. MR1640344 (99e:60220) |
Szegö, Gábor. Orthogonal polynomials.
Fourth edition.
American Mathematical Society, Colloquium Publications, Vol. XXIII.
American Mathematical Society, Providence, R.I., 1975. xiii+432 pp. MR0372517 (51 #8724) |
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|