![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Intermittence and nonlinear parabolic stochastic partial differential equations
|
Mohammud Foondun, University of Utah Davar Khoshnevisan, University of Utah |
Abstract
We consider nonlinear parabolic
SPDEs of the form
$partial_t u=sL u + sigma(u)dot w$, where
$dot w$ denotes space-time white noise,
$sigma:RtoR$ is [globally] Lipschitz continuous,
and $sL$ is the $L^2$-generator of a L'evy process.
We present precise criteria for existence
as well as uniqueness of solutions.
More significantly, we prove that these solutions grow
in time with at most a precise exponential rate.
We establish also that when $sigma$ is globally Lipschitz
and asymptotically sublinear, the solution
to the nonlinear heat equation is ``weakly intermittent,''
provided that the symmetrization
of $sL$ is recurrent and the initial data is sufficiently
large.
Among other things, our results lead to general
formulas for the upper second-moment
Liapounov exponent of the parabolic
Anderson model for $sL$ in dimension $(1+1)$. When
$sL=kappapartial_{xx}$ for $kappa>0$, these formulas
agree with the earlier results of statistical physics
cite{Kardar,KrugSpohn,LL63}, and also probability theory
cite{BC,CM94} in the two exactly-solvable cases. That is
when $u_0=delta_0$ or $u_0equiv 1$; in those cases
the moments of the solution to the SPDE can be computed
cite{BC}.
|
Full text: PDF
Pages: 548-568
Published on: February 24, 2009
|
Bibliography
- Bertini, Lorenzo; Cancrini, Nicoletta. The stochastic heat equation: Feynman-Kac formula and intermittence. J. Statist. Phys. 78 (1995), no. 5-6, 1377--1401. MR1316109 (95j:60093)
- Bertoin, Jean. Lévy processes.Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564 (98e:60117)
- Brzeźniak, Zdzisƚaw; van Neerven, Jan. Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43 (2003), no. 2, 261--303. MR2051026 (2005c:60077)
- Carlen, Eric; Krée, Paul. $Lsp p$ estimates on iterated stochastic integrals. Ann. Probab. 19 (1991), no. 1, 354--368. MR1085341 (92e:60085)
- Carmona, René A.; Molchanov, S. A. Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994), no. 518, viii+125 pp. MR1185878 (94h:35080)
- Carmona, Rene; Koralov, Leonid; Molchanov, Stanislav. Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem. Random Oper. Stochastic Equations 9 (2001), no. 1, 77--86. MR1910468 (2003g:60104)
- Carmona, René A.; Viens, Frederi G. Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter. Stochastics Stochastics Rep. 62 (1998), no. 3-4, 251--273. MR1615092 (99c:60126)
- Cranston, M.; Molchanov, S. Quenched to annealed transition in the parabolic Anderson problem. Probab. Theory Related Fields 138 (2007), no. 1-2, 177--193. MR2288068 (2008h:60066)
- Cranston, M.; Molchanov, S. On phase transitions and limit theorems for homopolymers. Probability and mathematical physics, 97--112, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007. MR2352264 (2009a:60119)
- Cranston, M.; Mountford, T. S.; Shiga, T. Lyapunov exponent for the parabolic Anderson model with Lévy noise. Probab. Theory Related Fields 132 (2005), no. 3, 321--355. MR2197105 (2007h:60053)
- Cranston, M.; Mountford, T. S.; Shiga, T. Lyapunov exponents for the parabolic Anderson model. Acta Math. Univ. Comenian. (N.S.) 71 (2002), no. 2, 163--188. MR1980378 (2004d:60162)
- Da Prato, Giuseppe. Kolmogorov equations for stochastic PDE's with multiplicative noise. Stochastic analysis and applications, 235--263, Abel Symp., 2, Springer, Berlin, 2007. MR2397790
- Da Prato, Giuseppe; Zabczyk, Jerzy. Stochastic equations in infinite dimensions.Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. xviii+454 pp. ISBN: 0-521-38529-6 MR1207136 (95g:60073)
- Dalang, Robert C. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999), no. 6, 29 pp. (electronic). MR1684157 (2000b:60132)
- Dalang, Robert C.; Mueller, Carl. Some non-linear S.P.D.E.'s that are second order in time. Electron. J. Probab. 8 (2003), no. 1, 21 pp. (electronic). MR1961163 (2004a:60118)
- Dalang, Robert C. and Carl Mueller (2008). Intermittency properties in a hyperbolic Anderson problem (preprint).%
- Davis, Burgess. On the $Lsp{p}$ norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976), no. 4, 697--704. MR0418219 (54 #6260)
- Florescu, Ionut, and Frederi Viens (2006). Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space, Probab. Th. Rel. Fields, 135 (4), 603-644.
- Foondun, Mohammud, Davar Khoshnevisan, and Eulalia Nualart (2007). A local-time correspondence for stochastic partial differential equations (preprint).
- Gärtner, J.; den Hollander, F. Intermittency in a catalytic random medium. Ann. Probab. 34 (2006), no. 6, 2219--2287. MR2294981 (2008e:60200)
- Gärtner, Jürgen; König, Wolfgang. The parabolic Anderson model. Interacting stochastic systems, 153--179, Springer, Berlin, 2005. MR2118574 (2005k:82042)
- Gärtner, J.; König, W.; Molchanov, S. A. Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Related Fields 118 (2000), no. 4, 547--573. MR1808375 (2002i:60121)
- Gradshteyn, I. S.; Ryzhik, I. M. Table of integrals, series, and products.Fifth edition.CD-ROM version 1.0 for PC, MAC, and UNIX computers.Academic Press, Inc., San Diego, CA, 1996. ISBN: 0-12-294756-8 MR1398882 (97c:00014)
- Gruninger, Gabriela, and Wolfgang Konig (2008). Potential confinement property of the parabolic Anderson model (preprint).%
- Hawkes, J. Local times as stationary processes. From local times to global geometry, control and physics (Coventry, 1984/85), 111--120, Pitman Res. Notes Math. Ser., 150, Longman Sci. Tech., Harlow, 1986. MR0894527 (88g:60189)
- Jacob, N. Pseudo differential operators and Markov processes. Vol. III.Markov processes and applications.Imperial College Press, London, 2005. xxviii+474 pp. ISBN: 1-86094-568-6 MR2158336 (2006i:60001)
- van der Hofstad, Remco; König, Wolfgang; Mörters, Peter. The universality classes in the parabolic Anderson model. Comm. Math. Phys. 267 (2006), no. 2, 307--353. MR2249772 (2007g:82029)
- Kardar, Mehran. Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nuclear Phys. B 290 (1987), no. 4, 582--602. MR0922846 (89f:82058)
- bibitem Kardar, Mehran, Giorgio Parisi, and Yi-Cheng Zhang (1986). Dynamic scaling of growing interfaces, emph{Phys. Rev. Lett.} textbf{56}{it (9)}, 889--892.%
- Khoshnevisan, Davar. Probability.Graduate Studies in Mathematics, 80. American Mathematical Society, Providence, RI, 2007. xvi+224 pp. ISBN: 978-0-8218-4215-7; 0-8218-4215-3 MR2296582 (2008k:60001)
- Konig, Wolfgang, Hubert Lacoin, Peter Morters, and Nadia Sidorova (2008). A two cities theorem for the parabolic Anderson model (preprint).%
- Krug, J. and H. Spohn (1991). Kinetic roughening of growing surfaces, in: Solids Far From Equilibrium: Growth, Morphology, and Defects (ed.: C. Godreche), Cambridge University Press, Cambridge.%
- Lieb, Elliott H. and Werner Liniger (1963). Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. (2) 130, 1605--1616.
- Lunardi, Alessandra. Analytic semigroups and optimal regularity in parabolic problems.Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. xviii+424 pp. ISBN: 3-7643-5172-1 MR1329547 (96e:47039)
- Molchanov, Stanislav A. Ideas in the theory of random media. Acta Appl. Math. 22 (1991), no. 2-3, 139--282. MR1111743 (92m:82067)
- Mueller, Carl. On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 (1991), no. 4, 225--245. MR1149348 (93e:60122)
- Peszat, Szymon; Zabczyk, Jerzy. Nonlinear stochastic wave and heat equations. Probab. Theory Related Fields 116 (2000), no. 3, 421--443. MR1749283 (2001f:60071)
- Shiga, Tokuzo. Exponential decay rate of survival probability in a disastrous random environment. Probab. Theory Related Fields 108 (1997), no. 3, 417--439. MR1465166 (98f:60212)
- Walsh, John B. An introduction to stochastic partial differential equations. École d'été de probabilités de Saint-Flour, XIV---1984, 265--439, Lecture Notes in Math., 1180, Springer, Berlin, 1986. MR0876085 (88a:60114)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|