![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Classical and Variational Differentiability of BSDEs with Quadratic Growth
|
Stefan Ankirchner, Humboldt Uiversitaet Berlin Peter Imkeller, Humboldt Uiversitaet Berlin Goncalo JN Dos Reis, Humboldt Uiversitaet Berlin |
Abstract
We consider Backward Stochastic Differential Equations (BSDEs) with
generators that grow quadratically in the control variable. In a
more abstract setting, we first allow both the terminal condition
and the generator to depend on a vector parameter $x$. We give
sufficient conditions for the solution pair of the BSDE to be
differentiable in $x$. These results can be applied to systems of
forward-backward SDE. If the terminal condition of the BSDE is given
by a sufficiently smooth function of the terminal value of a forward
SDE, then its solution pair is differentiable with respect to the
initial vector of the forward equation. Finally we prove sufficient
conditions for solutions of quadratic BSDEs to be differentiable in
the variational sense (Malliavin differentiable).
|
Full text: PDF
Pages: 1418-1453
Published on: November 9, 2007
|
Bibliography
-
S. Ankirchner, P. Imkeller, A. Popier. Optimal cross hedging of insurance derivatives. Preprint, (2005).
-
P. Briand, F. Confortola. BSDEs with stochastic Lipschitz condition and quadratic PDEs in
hilbert spaces. To appear in Stochastic Process. Appl. (2007)
-
S. Chaumont, P. Imkeller, M. Müller, U. Horst. A simple model for trading climate risk.
Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal
of Economic Research, 74 (2005), no. 2, 175--195.
Available at RePEc:diw:diwvjh:74-2-6
-
S. Chaumont; P. Imkeller; M. Müller. Equilibrium trading of climate and weather risk and numerical
simulation in a Markovian framework.
Stoch. Environ. Res. Risk Assess. 20 (2006), no. 3, 184--205. MR2297447
-
P. Cheridito; H. Soner; N. Touzi; N. Victoir. Second-order backward stochastic differential equations and fully
nonlinear parabolic PDEs.
Comm. Pure Appl. Math. 60 (2007), no. 7, 1081--1110. MR2319056
-
N. El Karoui; S. Peng; M. C. Quenez. Backward stochastic differential equations in finance.
Math. Finance 7 (1997), no. 1, 1--71. MR1434407 (98d:90030)
-
U. Horst; M. Müller. On the spanning property of risk bonds priced by equilibrium. To appear in Mathematics of Operations Reasearch (2006).
-
N. Kazamaki. Continuous exponential martingales and BMO.
Lecture Notes in Mathematics, 1579. Springer-Verlag, Berlin, 1994. viii+91 pp. ISBN: 3-540-58042-5 MR1299529 (95k:60110)
-
M. Kobylanski. Backward stochastic differential equations and partial differential
equations with quadratic growth.
Ann. Probab. 28 (2000), no. 2, 558--602. MR1782267 (2001h:60110)
-
H. Kunita. Stochastic flows and stochastic differential equations.
Cambridge Studies in Advanced Mathematics, 24. Cambridge University Press, Cambridge, 1990. xiv+346 pp. ISBN: 0-521-35050-6 MR1070361 (91m:60107)
-
M.A. Morlais. Quadratic BSDEs driven by continuous martingale and application to maximization problem. Preprint. (2007). Available at arXiv:math/0610749v2.
-
D. Nualart. The Malliavin calculus and related topics.
Probability and its Applications (New York). Springer-Verlag, New York, 1995. xii+266 pp. ISBN: 0-387-94432-X MR1344217 (96k:60130)
-
P. E. Protter. Stochastic integration and differential equations.
Second edition.
Applications of Mathematics (New York), 21. Stochastic Modelling and Applied Probability.
Springer-Verlag, Berlin, 2004. xiv+415 pp. ISBN: 3-540-00313-4 MR2020294 (2005k:60008)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|