![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Erdos-Renyi random graphs + forest fires = self-organized criticality
|
Balazs Rath, Budapest University of Technology Balint Toth, Budapest University of Technology |
Abstract
We modify the usual Erdos-Renyi random graph evolution by letting
connected clusters 'burn down' (i.e. fall apart to disconnected single
sites) due to a Poisson flow of lightnings. In a range of the
intensity of rate of lightnings the system sticks to a permanent.
|
Full text: PDF
Pages: 1290-1327
Published on: June 15, 2009
|
Bibliography
-
D. Aldous. Deterministic and stochastic models for coalescence
(aggregation and coagulation): a review of the mean-field theory
for probabilists.
Bernoulli , 5 : 3--48 (1999)
1673235
-
J. van den Berg, R. Brouwer: Self-destructive percolation.
Random Structures and Algorithms , 24 : 480-501 (2004)
2060632
-
J. van den Berg, R. Brouwer: Self-organized forest-fires near the
critical time. Communications in Mathematical Physics, :
265-277 (2006)
2238911
-
J. van den Berg, A. Jarai: On the asymptotic density in a
one-dimensional selforganized critical forest-fire model.
Communications in Mathematical Physics , 253 : 633-644 (2005)
2116731
-
J. van den Berg, B. Toth: A signal-recovery system: asymptotic
properties, and construction of an infinite-volume limit.
Stochastic Processes and their Applications , 96 : 177-190
(2001)
1865354
-
B. Bollobas: Random Graphs. Cambridge University Press,
2001
1864966
-
William Feller.
An introduction to probability theory and its applications.
Vol. II. Second edition. John Wiley and Sons Inc., New York, 1971.
0270403
-
R. Brouwer: Percolation, forest-fires and monomer-dimers (or
the hunt for
self-organised criticality).
PhD thesis, VU Amsterdam , 2005.
-
E. Buffet. J.V. Pule: On Lushnikov's model of gelation.
Journal of Statistical Physics , 58: 1041-1058 {1990}
1049055
-
E. Buffet. J.V. Pule: Polymers and random graphs. Journal
of Statistical Physics , 64 : 87-110 {1991}
1117648
-
B. Drossel, F. Schwabl: Self-organized critical forest fire
model. Physical Review Letters , 69 : 1629-1632 (1992)
-
M. Duerre: Existence of multi-dimensional infinite volume
self-organized critical forest-fire models. Electronic
Journal of Probability , 11 : 513-539 (2006)
2242654
-
M. Duerre: Uniqueness of multi-dimensional infinite-volume
self-organized critical forest fire models. Electronic
Communications in Probability , 11 : 304-315 (2006)
2266720
-
P. Erdos, A. Renyi: On random graphs I. Publicationes
Mathematicae Debrecen , 6 : 290-297 (1959)
0120167
-
S. Janson, T. Luczak, A. Rucinski: Random Graphs. John Wiley
and Sons, NY, 2000
1782847
-
K. Schenk, B. Drossel, F. Schwabl: Self-organized critical
forest-fire model on large scales. Physical Review E ,
65 : 026135, (2002)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|