![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Representation of continuous linear forms on the set of ladlag processes and the hedging of American claims under proportional costs
|
Jean-Francois Chassagneux, ENSAE Bruno Bouchard, Université Paris Dauphine, Ceremade |
Abstract
We discuss a d-dimensional version (for làdlàg optional
processes) of a duality result by Meyer (1976) between
{bounded} càdlàg adapted processes and random measures. We show
that it allows to establish, in a very natural way, a dual
representation for the set of initial endowments which allow to
super-hedge a given American claim in a continuous time model
with proportional transaction costs. It generalizes a previous
result of Bouchard and Temam (2005) who considered a discrete
time setting. It also completes the very recent work of Denis, De
Vallière and Kabanov (2008) who studied càdlàg American claims and
used a completely different approach.
|
Full text: PDF
Pages: 612-632
Published on: February 27, 2009
|
Bibliography
- Bismut J.-M. (1979). Temps d'arrêt optimal,
quasi-temps d'arrêt et retournement du temps. Ann.
Probab. 7, 933-964. Math. Review number not available.
- Bouchard B. and H. Pham (2004). Wealth-Path Dependent Utility Maximization in Incomplete Markets. Finance and Stochastics, 8 (4), 579-603. Math. Review 2212119
- Bouchard B. and E. Temam (2005). On the Hedging of American Options in Discrete Time
Markets with Proportional Transaction Costs. Electronic Journal of Probability, 10, 746-760. Math. Review 2164029
- Bouchard B., N. Touzi and A. Zeghal (2004). Dual Formulation of the Utility Maximization Problem : the case of Nonsmooth Utility. The Annals of Applied Probability, 14 (2), 678-717. Math. Review 2052898
- Campi L. and W. Schachermayer (2006). A super-replication theorem in Kabanov's model of transaction costs.
Finance and Stochastics, 10(4), 579-596. Math. Review number not available.
- Chalasani P. and S. Jha (2001). Randomized stopping times and American option pricing
with transaction costs. Mathematical Finance, 11(1), 33-77. Math. Review 1807848
- Delbaen F. and W. Shachermayer (1998). The fundamental
theorem of asset pricing for unbounded stochastic processes.
Math. Annalen , 312, 215-250. Math. Review number not available.
- Dellacherie C. (1972). Capacités et processus stochastiques. Springer-Verlag. Math. Review number not available.
- Denis E. , D. De Vallière and Y. Kabanov (2008). Hedging of american options under transaction costs.
preprint. Math. Review number not available.
- El Karoui N. (1979). Les aspects probabilistes du contrôle
stochastique. Ecole d'Eté de Probabilités de Saint Flour
IX, Lecture Notes in Mathematics 876, Springer Verlag. Math. Review number not available.
- El Karoui N. (1982). Une propriété de domination de l'enveloppe de Snell des semimartingales fortes. Sém. prob. Strasbourg, 16, 400-408. Math. Review number not available.
- Kabanov Y. and G. Last (2002). Hedging under transaction costs in currency markets: a continuous time model.
Mathematical Finance, 12, 63-70. Math. Review 1883786
- Kabanov Y. and C. Stricker (2002). Hedging of contingent claims under transaction
costs. Advances in Finance and Stochastics. Eds. K.
Sandmann and Ph. Schönbucher, Springer, 125-136. Math. Review 1929375
- Karatzas I. and S. G. Kou (1998). Hedging American contingent claims with constrained portfolios. Finance and Stochastics, 2, 215-258. Math. Review 1809521
- Karatzas I. and S. E. Shreve (1991). Brownian motion and stochastic calculus.
Springer Verlag, Berlin. Math. Review 1121940
- Karatzas I. et S.E. Shreve (1998), Methods of Mathematical
Finance, Springer Verlag. Math. Review 1640352
- Kindler J. (1983). A simple proof of the Daniell-Stone representation theorem. Amer. Math. Monthly, 90 (3), 396-397.Math. Review 0707155
- Kramkov D. (1996). Optional decomposition of supermartingales and hedging
in incomplete security markets. Probability Theory and
Related Fields, 105 (4), 459-479. Math. Review number not available.
- Kramkov D. and W. Schachermayer (1999). The Asymptotic Elasticity
of Utility Functions and Optimal Investment in Incomplete Markets.
Annals of Applied Probability, {bf 9} 3, 904 - 950. Math. Review 1722287
- Meyer P.A. (1966). Probabilités et
potentiel. Hermann, Paris. Math. Review 0205287
- Meyer P.A. (1976). Un cours sur les intégrales
stochastiques. Sém. prob. Strasbourg, 10, 245-400. Math. Review 0501332
- Rasonyi M. (2003). A remark on the superhedging theorem under transaction costs.
Séminaire de Probabilités XXXVII, Lecture Notes in
Math., 1832, Springer, Berlin-Heidelberg-New York, 394-398. Math. Review 2053056
- Schachermayer W. (2004).
The Fundamental Theorem of Asset Pricing under Proportional
Transaction Costs in Finite Discrete Time. Mathematical
Finance, 14 (1), 19-48. Math. Review 2030834
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|