Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 1 (1996) > Paper 2 open journal systems 


Hausdorff Dimension of Cut Points for Brownian Motion

Gregory F. Lawler, Duke University and Cornell University


Abstract
Let $B$ be a Brownian motion in $R^d$, $d=2,3$. A time $tin [0,1]$ is called a cut time for $B[0,1]$ if $B[0,t) cap B(t,1] = emptyset$. We show that the Hausdorff dimension of the set of cut times equals $1 - zeta$, where $zeta = zeta_d$ is the intersection exponent. The theorem, combined with known estimates on $zeta_3$, shows that the percolation dimension of Brownian motion (the minimal Hausdorff dimension of a subpath of a Brownian path) is strictly greater than one in $R^3$.


Full text: PDF

Pages: 1-20

Published on: November 8, 1995


Bibliography
  1. Burdzy, K. (1989). Cut points on Brownian paths. Ann. Probab. 17 1012--1036. Math. Review 90m:60091
  2. Burdzy, K. Percolation dimension of fractals. J. Math. Anal. Appl. 145, 282-288. Math. Review 90m:28007
  3. Burdzy, K. and Lawler, G. (1990). Non-intersection exponents for random walk and Brownian motion. Part I: Existence and an invariance principle. Probab. Th. and Rel. Fields 84 393-410. Math. Review 91g:60096
  4. Burdzy, K. and Lawler, G. (1990). Non-intersection exponents for random walk and Brownian motion. Part II: Estimates and applications to a random fractal. Ann. Probab. 18 981--1009. Math. Review 91g:60097
  5. Burdzy, K., Lawler, G., and Polaski, T. (1989). On the critical exponent for random walk intersections. J. Stat. Phys. 56 1--12. Math. Review 91h:60073
  6. Cranston, M. and Mountford, T. (1991). An extension of a result of Burdzy and Lawler. Probab. Th. and Rel. Fields 89, 487-502. Math. Review 92k:60155
  7. Duplantier, B. and Kwon, K.-H. (1988). Conformal invariance and intersections of random walks. Phys. Rev. Lett. 61 2514--2517.
  8. Dvoretzky, A., Erdos, P. and Kakutani, S. Double points of paths of Brownian motions in $n$-space. Acta. Sci. Math. Szeged 12 75-81. Math. Review number not available.
  9. Dvoretzky, Erdos, P. and Kakutani, S. Nonincrease everywhere of the Brownian motion process. {em Proc. Fourth Berkeley Symposium,} Vol. II, 102--116. Math. Review 24:A2448
  10. Falconer, K. (1990). Fractal Geometry: Mathematical Foundations and Applications. Wiley Math. Review 92j:28008
  11. Kaufman, R. (1969). Une propriete metrique du mouvement brownien. C. R. Acad. Sci., Paris {bf 268} 727-728. Math. Review 39:#2219
  12. Lawler, G. (1991). Intersections of Random Walks. Birkhauser-Boston Math. Review 92f:60012
  13. Lawler, G. (1995). Cut times for simple random walk. Duke University Mathematics Preprint 95-04.
  14. Lawler, G. (1995). The dimension of the frontier of planar Brownian motion. Duke University Mathematics Preprint 95-05.
  15. Lawler, G. (1995). Nonintersecting planar Brownian motions. Mathematical Physics Electronic Journal 1 (1995) Paper 4.
  16. Li, B. and Sokal, A. (1990). High-precision Monte Carlo test of the conformal-invariance predictions for two-dimensional mutually avoiding walks. J. Stat. Phys. 61 723-748.
  17. Perkins, E. and Taylor, S. J. (1987). Uniform measure results for the image of subsets under Brownian motion. Probab. Th. Rel. Fields 76, 257-289. Math. Review 88m:60122
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489