![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Hausdorff Dimension of Cut Points for Brownian Motion
|
Gregory F. Lawler, Duke University and Cornell University |
Abstract
Let $B$ be a Brownian motion in $R^d$, $d=2,3$. A time $tin [0,1]$
is called a cut time for $B[0,1]$ if
$B[0,t) cap B(t,1] = emptyset$.
We show that the Hausdorff dimension of the set of cut times equals
$1 - zeta$, where $zeta = zeta_d$ is the intersection exponent.
The theorem, combined with known estimates on $zeta_3$, shows that the
percolation dimension of Brownian motion (the minimal Hausdorff dimension
of a subpath of a Brownian path) is strictly greater than one
in $R^3$.
|
Full text: PDF
Pages: 1-20
Published on: November 8, 1995
|
Bibliography
-
Burdzy, K.
(1989). Cut points on Brownian paths. Ann. Probab. 17 1012--1036.
Math. Review 90m:60091
-
Burdzy, K.
Percolation dimension of fractals.
J. Math. Anal. Appl. 145, 282-288.
Math. Review 90m:28007
-
Burdzy, K. and Lawler, G.
(1990).
Non-intersection
exponents for random walk and Brownian motion. Part I: Existence
and an invariance principle. Probab. Th. and Rel. Fields 84 393-410.
Math. Review 91g:60096
-
Burdzy, K. and Lawler, G.
(1990). Non-intersection exponents for
random walk and Brownian motion. Part II: Estimates and applications to
a random fractal. Ann. Probab. 18 981--1009.
Math. Review 91g:60097
-
Burdzy, K., Lawler, G., and Polaski, T.
(1989). On the critical
exponent for random walk intersections. J. Stat. Phys. 56 1--12.
Math. Review 91h:60073
-
Cranston, M. and Mountford, T.
(1991). An extension
of a result of Burdzy and Lawler. Probab. Th. and Rel. Fields 89,
487-502.
Math. Review 92k:60155
-
Duplantier, B. and Kwon, K.-H.
(1988). Conformal invariance
and intersections of random walks. Phys. Rev. Lett. 61 2514--2517.
-
Dvoretzky, A., Erdos, P. and Kakutani, S.
Double points of paths of Brownian motions in $n$-space.
Acta. Sci. Math. Szeged 12 75-81.
Math. Review number not available.
-
Dvoretzky, Erdos, P. and Kakutani, S.
Nonincrease everywhere of the Brownian motion process.
{em Proc. Fourth Berkeley Symposium,} Vol. II, 102--116.
Math. Review 24:A2448
-
Falconer, K.
(1990).
Fractal Geometry: Mathematical Foundations and Applications.
Wiley
Math. Review 92j:28008
-
Kaufman, R. (1969). Une propriete metrique
du mouvement brownien. C. R. Acad. Sci., Paris {bf 268} 727-728.
Math. Review 39:#2219
-
Lawler, G.
(1991).
Intersections of Random Walks.
Birkhauser-Boston
Math. Review 92f:60012
-
Lawler, G.
(1995). Cut times for simple random walk. Duke University
Mathematics Preprint 95-04.
-
Lawler, G.
(1995). The dimension of the frontier
of planar Brownian motion. Duke University
Mathematics Preprint 95-05.
-
Lawler, G.
(1995).
Nonintersecting planar Brownian
motions. Mathematical
Physics Electronic Journal 1 (1995)
Paper 4.
-
Li, B. and Sokal, A. (1990). High-precision Monte Carlo
test of the conformal-invariance predictions for two-dimensional
mutually avoiding walks. J. Stat. Phys. 61 723-748.
-
Perkins, E. and Taylor, S. J. (1987). Uniform measure results
for the image of subsets under Brownian motion. Probab. Th. Rel. Fields
76, 257-289.
Math. Review 88m:60122
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|