![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Stochastic differential equations with boundary conditions driven by a Poisson noise
|
Aureli Alabert, Universitat Auṭnoma de Barcelona Miguel Ángel Marmolejo, Universidad del Valle |
Abstract
We consider one-dimensional stochastic differential equations with a
boundary condition, driven by a Poisson process. We study existence
and uniqueness of solutions and the absolute continuity of the law of the
solution. In the case when the coefficients are linear, we give an
explicit form of the solution and study the reciprocal process property.
|
Full text: PDF
Pages: 230-254
Published on: March 24, 2004
|
Bibliography
Alabert, Aureli; Ferrante,
Marco; Nualart, David. Markov field property
of stochastic differential equations. Ann. Probab. 23
(1995), no. 3, 1262--1288. MR1349171 (96k:60135) |
Alabert, Aureli; Marmolejo,
Miguel A. Differential equations with boundary conditions
perturbed by a Poisson noise. Stochastic Process. Appl.
91 (2001), no. 2, 255--276. MR1807681 (2002g:60086) |
Bernstein, S. Sur les liaisons
entre les grandeurs aléatoires. In: Verh. Internat.
Math.-Kongr., Zurich, 288--309, 1932. |
Buckdahn, Rainer; Nualart,
David. Skorohod stochastic differential equations with
boundary conditions. Stochastics Stochastics Rep. 45
(1993), no. 3-4, 211--235. MR1306932 (95j:60085) |
Carlen, Eric A.; Pardoux,
Étienne. Differential calculus and integration by parts
on Poisson space. Stochastics, algebra and analysis in classical
and quantum dynamics (Marseille, 1988), 63--73, Math. Appl., 59, Kluwer
Acad. Publ., Dordrecht, 1990. MR1052702 (91g:60066) |
Donati-Martin, Catherine.
Quasi-linear elliptic stochastic partial differential equation: Markov
property. Stochastics Stochastics Rep. 41
(1992), no. 4, 219--240. MR1275584 (95g:60074) |
León, Jorge A.; Ruiz
de Chávez, J.; Tudor, C. Strong
solutions of anticipating stochastic differential equations on the
Poisson space. Bol. Soc. Mat. Mexicana (3) 2
(1996), no. 1, 55--63. MR1395911 (97c:60154) |
León, Jorge A.; Solé,
Josep L.; Vives, Josep. A pathwise approach
to backward and forward stochastic differential equations on the
Poisson space. Stochastic Anal. Appl. 19
(2001), no. 5, 821--839. MR1857898 (2002h:60122) |
León, Jorge A.; Tudor,
Constantin. Chaos decomposition of stochastic bilinear
equations with drift in the first Poisson-Itô chaos. Statist.
Probab. Lett. 48 (2000), no. 1, 11--22. MR1767606 (2001g:60144) |
Nualart, D.; Pardoux,
É. Boundary value problems for stochastic differential
equations. Ann. Probab. 19 (1991), no. 3,
1118--1144. MR1112409 (92j:60072) |
Nualart, David; Vives,
Josep. Anticipative calculus for the Poisson process based on
the Fock space. Séminaire de Probabilités, XXIV,
1988/89, 154--165, Lecture Notes in Math., 1426, Springer,
Berlin, 1990. MR1071538 (92i:60109) |
Nualart, David; Vives,
Josep. A duality formula on the Poisson space and some
applications. Seminar on Stochastic Analysis, Random Fields and
Applications (Ascona, 1993), 205--213, Progr. Probab., 36, Birkhäuser,
Basel, 1995. MR1360277 (96k:60131) |
Ocone, Daniel; Pardoux,
Étienne. Linear stochastic differential equations with
boundary conditions. Probab. Theory Related Fields 82
(1989), no. 4, 489--526. MR1002898 (91a:60154) |
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|