![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation
|
Laszlo Erdos, LMU-University of Munich Jose A. Ramirez, Universidad de Costa Rica Benjamin Schlein, University of Bonn Horng-Tzer Yau, Harvard University |
Abstract
We consider N x N Hermitian random matrices with
independent identically distributed
entries (Wigner matrices). We assume that the distribution
of the entries have a Gaussian component with variance
N-3/4+&beta for some positive &beta>0. We prove that the local eigenvalue
statistics follows the universal Dyson sine kernel.
|
Full text: PDF
Pages: 526-604
Published on: May 1, 2010
|
Bibliography
- Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction
to Random Matrices. Studies in advanced mathematics, 118 , Cambridge
University Press, 2009. Math. Review number not yet available.
-
Bakry, D., Émery, M.: Diffusions hypercontractives. in:
Séminaire de probabilités, XIX, 1983/84, 1123 Lecture Notes in Mathematics, Springer, Berlin, 1985, 177--206. Math. Review 88j:60131
-
Ben Arous, G., Péché, S.: Universality of local
eigenvalue statistics for some sample covariance matrices.
Comm. Pure Appl. Math. LVIII (2005), 1--42. Math. Review 2006h:62072
-
Bobkov, S. G., Götze, F.: Exponential integrability
and transportation cost related to logarithmic
Sobolev inequalities. J. Funct. Anal. 163 (1999), no. 1,
1--28. Math. Review 2000b:46059 .
-
Borwein, P., Erdélyi, T.: Polynomials
and Polynomial Inequalities. Springer, 1995. Math. Review 97e:41001
-
Boutet de Monvel, A., Khorunzhy, A.:
Asymptotic distribution of smoothed eigenvalue
density. II. Wigner random matrices.
Random Oper. and Stoch. Equ., 7 No. 2, (1999), 149-168.
Math. Review 2001g:82055
-
Brézin, E., Hikami, S.: Correlations of nearby levels
induced
by a random potential. Nucl. Phys. B 479 (1996), 697--706, and
Spectral form factor in a random matrix theory. Phys. Rev. E
55 (1997), 4067--4083. Math. Review 97j:82080
-
Davies, E.B.: The functional calculus. J. London Math. Soc. (2)
52 (1) (1995), 166--176. Math. Review 96e:47017
-
Deift, P.: Orthogonal polynomials and
random matrices: a Riemann-Hilbert approach.
Courant Lecture Notes in Mathematics 3,
American Mathematical Society, Providence, RI, 1999.
Math. Review 2000g:47048
-
Dyson, F.J.: Statistical theory of energy levels of complex
systems, I, II, and III. J. Math. Phys. 3, 140-156, 157-165,
166-175 (1962).
Math. Review 26#1111
-
Dyson, F.J.: A Brownian-motion model for the eigenvalues
of a random matrix. J. Math. Phys. 3, 1191-1198 (1962).
Math. Review 26#5904
-
Esposito, R., Marra, R., Yau, H.-T.: Navier-Stokes equation
for stochastic particle systems on the lattice. Commun. Math. Phys.
(1996) 182, no.2, 395-456.
Math. Review 98h:82042
-
Erdös, L., Schlein, B., Yau, H.-T.:
Semicircle law on short scales and delocalization
of eigenvectors for Wigner random matrices.
Ann. Probab. 37, No. 3, 815--852 (2008).
Math. Review
-
Erdös, L., Schlein, B., Yau, H.-T.:
Local semicircle law and complete delocalization
for Wigner random matrices.
Commun. Math. Phys. 287, 641--655 (2009).
Math. Review 2010f:60018
-
Erdös, L., Schlein, B., Yau, H.-T.:
Wegner estimate and level repulsion for Wigner random matrices.
Int. Math. Res. Not., Vol. 2010, No. 3, 436-479 (2010).
Math. Review number not yet available.
-
Erdös, L., Péché, S.,
Ramirez, J., Schlein, B., Yau, H.-T.:
Bulk Universality for Wigner Matrices.
To appear in CPAM. Preprint http://arxiv.org/abs/0905.4176.
Math. Review number not yet available.
-
Gradshteyn, I.S., Ryzhik, I.M.: Table of
Integrals, Series and Products. Academic Press, 1979.
Math. Review 2001c:00002
-
Guionnet, A., Zeitouni, O.:
Concentration of the spectral measure
for large matrices. Electronic Comm. in Probability
5 (2000) Paper 14. Math. Review 2001k:15035
-
Guionnet, A.: Large random matrices: Lectures
on Macroscopic Asymptotics. 'Ecole d'E't'e de Probabilit'es
de Saint-Flour XXXVI-2006. Springer. Math. Review 2010d:60018
-
Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.:
Nonlinear diffusion limit for a system with nearest neighbor
interactions. Commun. Math. Phys. 118 (1988) no.1,
31-59. Math. Review 89m:60255
-
Johansson, K.: Universality of the local spacing
distribution in certain ensembles of Hermitian Wigner matrices.
Comm. Math. Phys. 215 (2001), no.3. 683--705.
Math. Review 2002k:15024
-
Ledoux, M.: The concentration of measure phenomenon.
Mathematical Surveys and Monographs, 89 American Mathematical
Society,
Providence, RI, 2001. Math. Review 2003k:28019
-
Levin, E., Lubinsky, S. D.: Universality limits in the
bulk for varying measures. Adv. Math. 219 (2008),
743-779. Math. Review 2010a:60009
-
Levin, E., Lubinsky, S. D.: Orthogonal polynomials
for exponential weights. Springer 2001. Math. Review 2002k:41001
-
Mehta, M.L.: Random Matrices. Academic Press, New York, 1991.
Math. Review 92f:82002
-
Pastur, L., Shcherbina M.:
Bulk universality and related properties of Hermitian matrix models.
J. Stat. Phys. 130 (2008), no.2., 205-250.
Math. Review 2008k:82050
-
Quastel, J., Yau, H.T.: Lattice gases, large deviations
and the incompressible Navier-Stokes equations. Ann. of Math. (2)
148 (1998), no.1, 51-108. Math. Review 99j:60157
-
Soshnikov, A.: Universality at the edge of the spectrum in
Wigner random matrices. Comm. Math. Phys. 207 (1999), no.3.
697-733. Math. Review 2001i:82037
-
Tao, T., Vu, V.: Random matrices: universality
of local eigenvalue statistics. Preprint arxiv:0906.0510.
Math. Review number not yet available.
-
Wigner, E.: Characteristic vectors of bordered matrices
with infinite dimensions. Ann. of Math. 62 (1955), 548-564.
Math. Review (17,1097c)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|