![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Stochastic Homogenization of Reflected Stochastic Differential Equations
|
Remi Rhodes, Université Paris-Dauphine, Ceremade |
Abstract
We investigate a functional limit theorem (homogenization) for Reflected Stochastic
Differential Equations on a half-plane with stationary coefficients when it is necessary to analyze both the effective Brownian motion and the effective local time. We prove that the limiting process is a reflected non-standard Brownian motion. Beyond the result, this problem is known as a prototype of non-translation invariant problem making the usual method of the "environment as seen from the particle" inefficient.
|
Full text: PDF
Pages: 989-1023
Published on: June 28, 2010
|
Bibliography
- M. Arisawa. Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 293-332. MR1961518
- G. Barles, F. Da Lio, P.-L. Lions, P.E. Souganidis. Ergodic
problems and periodic homogenization for fully non-linear equations
in half-space type domains with Neumann boundary conditions, Indiana Univ. Math. J. 57 No. 5 (2008), 2355-2376. MR2463972
- A. Bensoussan, J.L. Lions , G. Papanicolaou. Asymptotic methods
in periodic media. Ed. North Holland, 1978. 57 No. 5 (2008), 2355-2376. MR0503330
- F. Delarue, R. Rhodes. Stochastic homogenization of quasilinear
PDEs with a spatial degeneracy. Asymptotic Analysis. vol 61, no 2 (2009), 61-90. MR2499193
- M. Freidlin. Functional Integration and Partial Differential
Equations. volume 109 of Annals of Mathematics studies. Princeton
University Press, Princeton, NJ, 1985. MR0833742
- M. Fukushima , Y. Oshima, M. Takeda. Dirichlet Forms and Symmetric
Markov Processes. De Gruyter Studies in Mathematics 19, Walter de
Gruyter, Berlin and Hawthorne, New York, 1994. MR1303354
- D. Gilbarg, N.S. Trudinger. Elliptic partial equation of
second order. Grundlehren der mathematischen Wissenschaft 224,
Springer-Verlag, Berlin-Heidelberg-New York, 1983. MR0737190
- I.S. Helland. Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist. 9, 79-94, 1982. MR0668684
- N. Ikeda, S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North-Holland. Kodansha, 1981. MR1011252
- A. Jakubowski. A non-Skorohod topology on the Skorohod
space. Electron. J. Probability Vol. 2 (1997), No 4, p. 1-21. MR1475862
- V.V. Jikov, S.M. Kozlov, O.A. Oleinik. Homogenization of
differential operators and integral functionals. Springer-Verlag. Berlin, 1994. MR1329546
- O.A. Ladyzhenskaja, V.A. Solonnikov, N.N. Ural'ceva. Linear and
Quasi-linear Equations of Parabolic Type. (translated
from the Russian by S. Smith), Translations of Mathematical
Monographs, Vol. 23 American Mathematical Society, Providence, 1967. MR0241822
- P.L. Lions, A.S. Sznitman. Stochastic differential equations
with reflecting boundary conditions. Comm. Pure Appl. Math. vol.
37 (1984), 511-537. MR0745330
- C. Miranda. Partial Differential Equations of Elliptic Type. Springer 1970, (translated from Italian). MR0284700
- S. Olla. Homogenization of diffusion processes in Random
Fields. Cours de l'ecole doctorale Ecole polytechnique, 1994. Math. Review number not available
- Y. Ouknine,E. Pardoux. Homogenization of PDEs with non linear boundary condition. Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999), 229--242,
Progr. Probab., 52, Birkh"auser, Basel, 2002.
MR1958820
- E. Pardoux, S. Zhang. Generalized BSDEs and nonlinear boundary value problems, Probab. Theory Relat. Fields. 110, 535-558 (1998). MR1626963
- M. Revuz, M. Yor. Continuous martingales and Brownian motion. Grundlehren der Mathematischen Wissenschaften. vol 293, Springer-Verlag, Berlin, third edition, 1999. MR1725357
- R. Rhodes. Diffusion in a Locally Stationary Random
Environment. Probab. Theory Relat. Fields. 143, 545-568 (2009). MR2475672
- R. Rhodes. Homogenization of locally ergodic diffusions with possibly degenerate diffusion matrix. Annales de l'Institut Henri Poincare (PS) vol 45, no 4 (2009), 981-1001. MR2572160
- V. Sidoravicius, A.S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random
conductances. Probab. Theory Relat. Fields 129, 219$(G!9(B244 (2004). MR2063376
- H. Tanaka. Homogenization of diffusion processes with boundary
conditions. Stoc. Anal. Appl. Adv. Probab. Related Topics 7
Dekker, New York, 1984, 411-437. MR0776990
- S. Watanabe. On stochastic differential equations for
multidimensional diffusion processes with boundary conditions I and II, J. Math. Kyoto Univ. 11 (1971), 169-180, 545-551. MR0275537
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|