Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 15(2010) > Paper 8 open journal systems 


On the speed of coming down from infinity for Ξ-coalescent processes

Vlada Limic, CNRS


Abstract
The Ξ-coalescent processes were initially studied by Möhle and Sagitov (2001), and introduced by Schweinsberg (2000) in their full generality. They arise in the mathematical population genetics as the complete class of scaling limits for genealogies of Cannings' models. The Ξ-coalescents generalize Λ-coalescents, where now simultaneous multiple collisions of blocks are possible. The standard version starts with infinitely many blocks at time 0, and it is said to come down from infinity if its number of blocks becomes immediately finite, almost surely. This work builds on the technique introduced recently by Berstycki, Berestycki and Limic (2009), and exhibits deterministic ``speed'' function -- an almost sure small time asymptotic to the number of blocks process, for a large class of Ξ-coalescents that come down from infinity.


Full text: PDF

Pages: 217-240

Published on: March 1, 2010


Bibliography
  1. O. Angel, N. Berestycki and V. Limic. Global divergence of spatial coalescents. Preprint (2008). Math. Review number not available.
  2. N.H. Barton, A.M. Etheridge and A. Véber. A new model for evolution in a spatial continuum. Preprint (2009). Math. Review number not available.
  3. N. Berestycki. Recent progress in coalescent theory. Ensaios matematicos [Mathematical Surveys] 16 (2009), 193 pages. Math. Review 2574323.
  4. J. Berestycki, N. Berestycki and V. Limic. The Λ-coalescent speed of coming down from infinity. To appear in Ann. Probab. (2009). Math. Review number not available.
  5. J. Berestycki, N. Berestycki and V. Limic. Interpreting Λ-coalescent speed of coming down from infinity via particle representation of super-processes. In preparation. (2009) Math. Review number not available.
  6. J. Berestycki, N. Berestycki and J. Schweinsberg. Beta-coalescents and continuous stable random trees. Ann. Probab. 35 (2007), 1835--1887. Math. Review 2349577.
  7. J. Berestycki, N. Berestycki and J. Schweinsberg. Small-time behavior of beta-coalescents. Ann. Inst. H. Poincaré - Probabilités et Statistiques 44 (2008), 2:214--238. Math. Review 2446321 (2010a:60253).
  8. J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge University Press., Cambridge (2006). Math. Review 2007k:60004
  9. J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003), 261--288. Math. Review 2004f:60080
  10. J. Bertoin and J.-F. Le Gall Stochastic flows associated to coalescent processes III: Limit theorems. Illinois J. Math. 50 (2006), 147--181. Math. Review 2247827
  11. M. Birkner and J. Blath. Computing likelihoods for coalescents with multiple collisions in the infinitely-many-sites model. J. Math. Biol. 57 (2008), 3:435--465. Math. Review 2411228 (2009i:92046)
  12. M. Birkner, J. Blath, M. Möhle, M. Steinrücken and J. Tams. A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks. ALEA Lat. Am. J. Probab. Math. Stat. 6, (2009) 25--61. Math. Review 2485878 (MR2010c:60284)
  13. R. Durrett. Probability: theory and examples. third edition. Duxbury advanced series (2004). Math. Review number not available.
  14. R. Durrett and J. Schweinsberg. A coalescent model for the effect of advantageous mutations on the genealogy of a population. Random partitions approximating the coalescence of lineages during a selective sweep. Stochastic Process. Appl. 115 (2005), 1628--1657. Math. Review 2165337 (2006h:92026)
  15. J. F. C. Kingman. The coalescent. Stoch. Process. Appl. 13 (1982), 235--248. Math. Review 0671034 (84a:60079)
  16. J. F. C. Kingman. On the genealogy of large populations. J. Appl. Probab., 19 A (1982), 27--43. Math. Review 0633178 (83d:92043)
  17. G. Li and D. Hedgecock. Genetic heterogeneity, detected by PCR SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can. J. Fish. Aquat. Sci. 55 (1998), 1025--1033. Math. Review number not available.
  18. V. Limic and A. Sturm. The spatial Lambda-coalescent. Electron. J. Probab. 11 (2006), 363--393. Math. Review 2223040 (2007b:60183)
  19. M. Möhle and S. Sagitov. A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29 (2001), 4:1547--1562. Math. Review 1880231 (2003b:60134)
  20. A.P. Morris, J.C. Whittaker and D.J. Balding. Fine-scale mapping of disease loci via shattered coalescent modeling of genealogies. Am. J. Hum. Genet. 70 (2002), 686--707. Math. Review number not available.
  21. J. Pitman. Coalescents with multiple collisions. Ann. Probab. 27 (1999), 1870--1902. Math. Review 1742892 (2001h:60016)
  22. S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999), 4:1116--1125. Math. Review 1742154 (2001f:92019)
  23. J. Schweinsberg. A necessary and sufficient condition for the Λ-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000), 1--11. Math. Review 1736720 (2001g:60025)
  24. J. Schweinsberg. Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 (2000), 1--50. Math. Review 1781024 (2002g:60113)
  25. J. Schweinsberg and R. Durrett. Random partitions approximating the coalescence of lineages during a selective sweep. Ann. Appl. Probab. 15 (2005), 3:1591--1651. Math. Review 2152239
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489