Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=2126

Scaling Limits for Random Quadrangulations of Positive Genus

Jérémie L Bettinelli, Université Paris Sud

Abstract

Abstract. We discuss scaling limits of large bipartite quadrangulations of positive genus. For a given g, we consider, for every positive integer n, a random quadrangulation q_n uniformly distributed over the set of all rooted bipartite quadrangulations of genus g with n faces. We view it as a metric space by endowing its set of vertices with the graph distance. We show that, as n tends to infinity, this metric space, with distances rescaled by the factor n to the power of -1/4, converges in distribution, at least along some subsequence, toward a limiting random metric space. This convergence holds in the sense of the Gromov-Hausdorff topology on compact metric spaces. We show that, regardless of the choice of the subsequence, the Hausdorff dimension of the limiting space is almost surely equal to 4. Our main tool is a bijection introduced by Chapuy, Marcus, and Schaeffer between the quadrangulations we consider and objects they call well-labeled g-trees. An important part of our study consists in determining the scaling limits of the latter.

Full text: PDF




Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article. Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to Philippe Carmona Laboratoire Jean Leray UMR 6629 Universite de Nantes, 2, Rue de la Houssinière BP 92208 F-44322 Nantes Cédex 03 France You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona. You can even send a scanned jpeg or pdf of this copyright form to the managing editor ejpecpme@math.univ-nantes.fr. as an attached file. If a paper has several authors, the corresponding author signs the copyright form on behalf of all the authors.

Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=2126