Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1682

Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct

Amaury Lambert, University Paris 6

Abstract

We consider continuous-state branching (CB) processes which become extinct (i.e., hit 0) with positive probability. We characterize all the quasi-stationary distributions (QSD) for the CB-process as a stochastically monotone family indexed by a real number. We prove that the minimal element of this family is the so-called Yaglom quasi-stationary distribution, that is, the limit of one-dimensional marginals conditioned on being nonzero. Next, we consider the branching process conditioned on not being extinct in the distant future, or Q-process, defined by means of Doob h-transforms. We show that the Q-process is distributed as the initial CB-process with independent immigration, and that under the Llog L condition, it has a limiting law which is the size-biased Yaglom distribution (of the CB-process). More generally, we prove that for a wide class of nonnegative Markov processes absorbed at 0 with probability 1, the Yaglom distribution is always stochastically dominated by the stationary probability of the Q-process, assuming that both exist. Finally, in the diffusion case and in the stable case, the Q-process solves a SDE with a drift term that can be seen as the instantaneous immigration.

Full text: PDF | PostScript




Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article. Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to Philippe Carmona Laboratoire Jean Leray UMR 6629 Universite de Nantes, 2, Rue de la Houssinière BP 92208 F-44322 Nantes Cédex 03 France You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona. You can even send a scanned jpeg or pdf of this copyright form to the managing editor ejpecpme@math.univ-nantes.fr. as an attached file. If a paper has several authors, the corresponding author signs the copyright form on behalf of all the authors.

Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1682