Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1898

Coalescent processes in subdivided populations subject to recurrent mass extinctions

Jesse E. Taylor, Department of Statistics, University of Oxford
Amandine Véber, Département de Mathématiques, Université Paris-Sud

Abstract

We investigate the infinitely many demes limit of the genealogy of a sample of individuals from a subdivided population that experiences sporadic mass extinction events. By exploiting a separation of time scales that occurs within a class of structured population models generalizing Wright's island model, we show that as the number of demes tends to infinity, the limiting form of the genealogy can be described in terms of the alternation of instantaneous scattering phases that depend mainly on local demographic processes, and extended collecting phases that are dominated by global processes. When extinction and recolonization events are local, the genealogy is described by Kingman's coalescent, and the scattering phase influences only the overall rate of the process. In contrast, if the demes left vacant by a mass extinction event are recolonized by individuals emerging from a small number of demes, then the limiting genealogy is a coalescent process with simultaneous multiple mergers (a Xi-coalescent). In this case, the details of the within-deme population dynamics influence not only the overall rate of the coalescent process, but also the statistics of the complex mergers that can occur within sample genealogies. These results suggest that the combined effects of geography and disturbance could play an important role in producing the unusual patterns of genetic variation documented in some marine organisms with high fecundity.

Full text: PDF | PostScript




Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article. Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to Philippe Carmona Laboratoire Jean Leray UMR 6629 Universite de Nantes, 2, Rue de la Houssinière BP 92208 F-44322 Nantes Cédex 03 France You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona. You can even send a scanned jpeg or pdf of this copyright form to the managing editor ejpecpme@math.univ-nantes.fr. as an attached file. If a paper has several authors, the corresponding author signs the copyright form on behalf of all the authors.

Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1898