Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1298

Recurrence of Distributional Limits of Finite Planar Graphs

Itai Benjamini, The Weizmann Institute of Science
Oded Schramm, Microsoft Research

Abstract

Suppose that Gj is a sequence of finite connected planar graphs, and in each Gj a special vertex, called the root, is chosen randomly-uniformly. We introduce the notion of a distributional limit G of such graphs. Assume that the vertex degrees of the vertices in Gj are bounded, and the bound does not depend on j. Then after passing to a subsequence, the limit exists, and is a random rooted graph G. We prove that with probability one G is recurrent. The proof involves the Circle Packing Theorem. The motivation for this work comes from the theory of random spherical triangulations.

Full text: PDF | PostScript




Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article. Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to Philippe Carmona Laboratoire Jean Leray UMR 6629 Universite de Nantes, 2, Rue de la Houssinière BP 92208 F-44322 Nantes Cédex 03 France You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona. You can even send a scanned jpeg or pdf of this copyright form to the managing editor ejpecpme@math.univ-nantes.fr. as an attached file. If a paper has several authors, the corresponding author signs the copyright form on behalf of all the authors.

Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1298