Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=2044

On the Shuffling Algorithm for Domino Tilings

Eric J. G. Nordenstam, Swedish Royal Institute of Technology (KTH)

Abstract

We study the dynamics of a certain discrete model of interacting interlaced particles that comes from the so called shuffling algorithm for sampling a random tiling of an Aztec diamond. It turns out that the transition probabilities have a particularly convenient determinantal form. An analogous formula in a continuous setting has recently been obtained by Jon Warren studying certain model of interlacing Brownian motions which can be used to construct Dyson's non-intersecting Brownian motion. We conjecture that Warren's model can be recovered as a scaling limit of our discrete model and prove some partial results in this direction. As an application to one of these results we use it to rederive the known result that random tilings of an Aztec diamond, suitably rescaled near a turning point, converge to the GUE minor process.

Full text: PDF




Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article. Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to Philippe Carmona Laboratoire Jean Leray UMR 6629 Universite de Nantes, 2, Rue de la Houssinière BP 92208 F-44322 Nantes Cédex 03 France You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona. You can even send a scanned jpeg or pdf of this copyright form to the managing editor ejpecpme@math.univ-nantes.fr. as an attached file. If a paper has several authors, the corresponding author signs the copyright form on behalf of all the authors.

Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=2044