
E l e c t r o n i c

J
o

u
r n a l

o
f

P
r o b a b i l i t y

Vol. 11 (2006), Paper no. 33, pages 844–859.

Journal URL
http://www.math.washington.edu/~ejpecp/

Weighted uniform consistency of kernel density

estimators with general bandwidth sequences

Dony, Julia∗ and Einmahl, Uwe†

Department of Mathematics
Free University of Brussels (VUB)

Pleinlaan 2
B-1050 Brussels, Belgium

e-mail: jdony@vub.ac.be, ueinmahl@vub.ac.be

Abstract

Let fn,h be a kernel density estimator of a continuous and bounded d-dimensional density f .
Let ψ(t) be a positive continuous function such that ‖ψfβ‖∞ <∞ for some 0 < β < 1/2. We
are interested in the rate of consistency of such estimators with respect to the weighted sup-
norm determined by ψ. This problem has been considered by Giné, Koltchinskii and Zinn
(2004) for a deterministic bandwidth hn. We provide “uniform in h” versions of some of their
results, allowing us to determine the corresponding rates of consistency for kernel density
estimators where the bandwidth sequences may depend on the data and/or the location.
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1 Introduction

Let X,X1, X2, . . . be i.i.d. IRd-valued random vectors and assume that the common distribution
of these random vectors has a bounded Lebesgue density function, which we shall denote by f.
A kernel K will be any measurable positive function which satisfies the following conditions:

(K.i)
∫

IRd
K(s)ds = 1,

(K.ii) ‖K‖∞ := sup
x∈IRd

|K(x)| = κ <∞.

The kernel density estimator of f based upon the sample X1, . . . , Xn and bandwidth 0 < h < 1
is defined as follows,

fn,h(t) =
1
nh

n∑
i=1

K

(
Xi − t

h1/d

)
, t ∈ IRd.

Choosing a suitable bandwidth sequence hn → 0 and assuming that the density f is continuous,
one obtains a strongly consistent estimator f̂n := fn,hn of f , i.e. one has with probability 1,
f̂n(t) → f(t), t ∈ IRd. There are also results concerning uniform convergence and convergence
rates. For proving such results one usually writes the difference f̂n(t) − f(t) as the sum of a
probabilistic term f̂n(x) − IEf̂n(t) and a deterministic term IEf̂n(t) − f(t), the so-called bias.
The order of the bias depends on smoothness properties of f only, whereas the first (random)
term can be studied via empirical process techniques as has been pointed out by Stute and
Pollard (see [11, 12, 13, 10]), among other authors.

After the work of Talagrand [14], who established optimal exponential inequalities for empirical
processes, there has been some renewed interest in these problems. Einmahl and Mason [3] looked
at a large class of kernel type estimators including density and regression function estimators
and determined the precise order of uniform convergence of the probabilistic term over compact
subsets. Giné and Guillou [5] (see also Deheuvels [1]) showed that if K is a “regular” kernel, the
density function f is bounded and hn satisfies among others the regularity conditions

log(1/hn)
log log n

−→∞ and
nhn

log n
−→∞,

one has with probability 1,

‖f̂n − IEf̂n‖∞ = O

√ | log hn|
nhn

 . (1)

Moreover, this rate cannot be improved.

Recently, Giné, Koltchinskii and Zinn (see [8]) obtained refinements of these results by estab-
lishing the same convergence rate for density estimators with respect to weighted sup-norms.
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Under additional assumptions on the bandwidth sequence and the density function, they pro-
vided necessary and sufficient conditions for stochastic and almost sure boundedness for the
quantity √

nhn

| log hn|
sup
t∈IRd

|ψ(t){f̂n(t)− IEf̂n(t)}|.

Results of this type can be very useful when estimating integral functionals of the density f
(see for example Mason [9]). Suppose for instance that we want to estimate

∫
IRd φ(f(t))dt <∞

where φ : IR → IR is a measurable function. Then a possible estimator would be given by∫
IRd φ(fn,h(t))dt. Assuming that φ is Lipschitz and that

∫
IRd fβ(t)dt =: cβ < ∞ for some

0 < β < 1/2, one can conclude that for some constant D > 0,∣∣∣∣∫
IRd

φ(fn,h(t))dt−
∫

IRd
φ(IEfn,h(t))dt

∣∣∣∣ ≤ Dcβ sup
t∈IRd

|f−β(t){fn,h(t)− IEfn,h(t)}|,

and we see that this term is of order
√
| log h|/nh. For some further related results, see also

Giné, Koltchinskii and Sakhanenko [6, 7].

In practical applications the statistician has to look at the bias as well. It is well known that
if one chooses small bandwidth sequences, the bias will be small whereas the probabilistic
term which is of order O(

√
| log hn|/nhn), might be too large. On the other hand, choosing a

large bandwidth sequence will increase the bias. So the statistician has to balance both terms
and typically, one obtains bandwidth sequences which depend on some quantity involving the
unknown distribution. Replacing this quantity by a suitable estimator, one ends up with a
bandwidth sequence depending on the data X1, . . . , Xn and, in some cases, also on the location
x. There are many elaborate schemes available in the statistical literature for finding such
bandwidth sequences. We refer the interested reader to the article by Deheuvels and Mason
[2] (especially Sections 2.3 and 2.4) and the references therein. Unfortunately, one can no
longer investigate the behavior of such estimators via the aforementioned results, since they are
dealing with density estimators based on deterministic bandwidth sequences.

To overcome this difficulty, Einmahl and Mason [4] introduced a method allowing them to
obtain “uniform in h” versions of some of their earlier results as well as of (1). These results
are immediately applicable for proving uniform consistency of kernel–type estimators when the
bandwidth h is a function of the location x or the data X1, . . . , Xn.

It is natural then to ask whether one can also obtain such “uniform in h” versions of some of
the results by Giné, Koltchinskii and Zinn [8]. We will answer this in the affirmative by using
a method which is based on a combination of some of their ideas with those of Einmahl and
Mason [4].

In order to formulate our results, let us first specify what we mean by a“regular” kernel K. First
of all, we will assume throughout that K is compactly supported. Rescaling K if necessary, we
can assume that its support is contained in [−1/2, 1/2]d. Next consider the class of functions

K =
{
K((· − t)/h1/d) : h > 0, t ∈ IRd

}
.

846



For ε > 0, let N (ε,K) = supQN (κε,K, dQ), where the supremum is taken over all probability
measures Q on (IRd,B), dQ is the L2(Q)-metric and, as usual, N (ε,K, dQ) is the minimal number
of balls {g : dQ(g, g′) < ε} of dQ -radius ε needed to cover K. We assume that K satisfies the
following uniform entropy condition:

(K.iii) for some C > 0 and ν > 0 : N (ε,K) ≤ Cε−ν , 0 < ε < 1.

Van der Vaart and Wellner [15] provide a number of sufficient conditions for (K.iii) to hold.
For instance, it is satisfied for general d ≥ 1, whenever K(x) = φ (p (x)), with p (x) being a
polynomial in d variables and φ a real valued function of bounded variation. Refer also to
condition (K) in [8].

Finally, to avoid using outer probability measures in all of our statements, we impose the fol-
lowing measurability assumption:

(K.iv) K is a pointwise measurable class.

With “pointwise measurable”, we mean that there exists a countable subclass K0 ⊂ K such
that we can find for any function g ∈ K a sequence of functions gm ∈ K0 for which gm(z) →
g(z), z ∈ IRd. This condition is discussed in van der Vaart and Wellner [15] and in particular
it is satisfied whenever K is right continuous. The following assumptions were introduced by
Giné, Koltchinskii and Zinn [8]. Note that we need slightly less regularity since we will not
determine the precise limiting constant or limiting distribution. In the following we will denote
the sup-norm on IRd by | · |.

Assumptions on the density. Let Bf := {t ∈ IRd : f(t) > 0} be the positivity set of f ,
and assume that Bf is open and that the density f is bounded and continuous on Bf . Further,
assume that

(D.i) ∀ δ > 0, ∃ h0 > 0 and 0 < c <∞ such that ∀ x, x+ y ∈ Bf ,

c−1f1+δ(x) ≤ f(x+ y) ≤ cf1−δ(x), |y| ≤ h0,

(D.ii) ∀ r > 0, set Fr(h) := {(x, y) : x+ y ∈ Bf , f(x) ≥ hr, |y| ≤ h}, then

lim
h→0

sup
(x,y)∈Fr(h)

∣∣∣∣f(x+ y)
f(x)

− 1
∣∣∣∣ = 0.

Assumptions on the weight function ψ.

(W.i) ψ : Bf → IR+ is positive and continuous,

(W.ii) ∀ δ > 0, ∃ h0 > 0 and 0 < c <∞ such that ∀ x, x+ y ∈ Bf and

c−1ψ1−δ(x) ≤ ψ(x+ y) ≤ cψ1+δ(x), |y| ≤ h0,

(W.iii) ∀ r > 0, set Gr(h) := {(x, y) : x+ y ∈ Bf , ψ(x) ≤ h−r, |y| ≤ h}, then

lim
h→0

sup
(x,y)∈Gr(h)

∣∣∣∣ψ(x+ y)
ψ(x)

− 1
∣∣∣∣ = 0.

847



Extra assumptions. For 0 < β < 1/2, assume that

(WD.i) ‖fβψ‖∞ = sup
t∈Bf

|fβ(t)ψ(t)| <∞,

(WD.ii) ∀ r > 0, lim
h→0

sup
(x,y)∈Gr(h)

∣∣∣∣f(x+ y)
f(x)

− 1
∣∣∣∣ = 0.

A possible choice for the weight function would be ψ = f−β in which case the last assumptions
follow from the corresponding one involving the density. For some discussion of these conditions
and examples, see page 2573 of Giné, Koltchinskii and Zinn [8].

Now, consider two decreasing functions

at := a(t) = t−αL1(t) and bt := b(t) := t−µL2(t), t > 0,

where 0 < µ < α < 1 and L1, L2 are slowly varying functions. Further define the functions

λ(t) :=
√
tat| log at|, t > 0,

λn(h) :=
√
nh| log h|, n ≥ 1, an ≤ h ≤ bn,

and it is easy to see that the function λ is regularly varying at infinity with positive exponent
0 < η := 1−θ

2 < 1/2 for some 0 < θ < 1. Finally, we assume that λ(t) is strictly increasing
(t > 0).

Theorem 1.1. Assume that the above hypotheses are satisfied for some 0 < β < 1/2, and that
we additionally have

lim sup
t→∞

tIP {ψ(X) > λ(t)} <∞. (2)

Then it follows that

∆n := sup
an≤h≤bn

√
nh

| log h|
‖ψ(fn,h − IEfn,h)‖∞

is stochastically bounded.

Note that if we choose an = bn = hn we re-obtain the first part of Theorem 2.1 in Giné,
Koltchinskii and Zinn [8]. They have shown that assumption (2) is necessary for this part
of their result if Bf = IRd or K(0) = κ. Therefore this assumption is also necessary for our
Theorem 1.1.

Remark. Choosing the estimator fn,hn where hn ≡ Hn(X1, . . . , Xn;x) ∈ [an, bn] is a general
bandwidth sequence (possibly depending on x and the observations X1, . . . , Xn) one obtains
that

‖ψ(fn,hn − IEfn,hn)‖∞ = OP(
√
| log an|/nan). (3)
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Indeed, due to the monotonicity of the function h→ nh/| log h|, 0 < h < 1 we can infer from the
stochastic boundedness of ∆n that for all ε > 0 and large enough n, there is a finite constant Cε

such that

IP

 sup
an≤h≤bn

‖ψ(fn,h − IEfn,h)‖∞ > Cε

√
| log an|
nan

 ≤ ε,

which in turn trivially implies (3). Note that this is exactly the same stochastic order as for the
estimator fn,an where one uses the deterministic bandwidth sequence an.

Theorem 1.2. Assume that the above hypotheses are satisfied for some 0 < β < 1/2, and that
we additionally have ∫ ∞

1
IP {ψ(X) > λ(t)} dt <∞. (4)

Then we have with probability one,

lim sup
n→∞

sup
an≤h≤bn

√
nh

| log h|
‖ψ(fn,h − IEfn,h)‖∞ ≤ C, (5)

where C is a finite constant.

Remark. If we consider the special case an = bn, and if we use the deterministic bandwidth
sequence hn = an, we obtain from the almost sure finiteness of ∆n that for the kernel density
estimator f̂n = fn,hn , with probability one,

lim sup
n→∞

‖ψ(f̂n − IEf̂n)‖∞√
nhn/| log hn|

≤ C <∞.

Moreover we can apply Proposition 2.6 of Giné, Koltchinskii and Zinn [8], and hence the latter
implies assumption (4) to be necessary for (5) if Bf = IRd or K(0) > 0.
Furthermore, with the same reasoning as in the previous remark following the stochastic
boundedness result, Theorem 1.2 applied to density estimators fn,hn with general (stochastic)
bandwidth sequences hn ≡ Hn(X1, . . . , Xn;x) ∈ [an, bn] leads to the same almost sure order
O(
√
| log an|/nan) as the one one would obtain by choosing a deterministic bandwidth sequence

hn = an.

We shall prove Theorem 1.1 in Section 2 and the proof of Theorem 1.2 will be given in Section 3.
In both cases we will bound ∆n by a sum of several terms and we show already in Section 2 that
most of these terms are almost surely bounded. To do that, we have to bound certain binomial
probabilities, and use an empirical process representation of kernel estimators. So essentially,
there will be only one term left for which we still have to prove almost sure boundedness, which
will require the stronger assumption (4) in Theorem 1.2.

2 Proof of Theorem 1.1

Throughout this whole section we will assume that the general assumptions specified in Section
1 as well as condition (2) are satisfied. Moreover, we will assume without loss of generality that
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‖fβψ‖∞ ≤ 1.

Recall that we have for any t ∈ Bf and an ≤ h ≤ bn,√
nh

| log h|
ψ(t){fn,h(t)− IEfn,h(t)}

=
ψ(t)
λn(h)

n∑
i=1

K

(
Xi − t

h1/d

)
− nψ(t)
λn(h)

IEK
(
X − t

h1/d

)
. (6)

We first show that the last term with the expectation can be ignored for certain t’s. To that
end we need the following lemma.

Lemma 2.1. For an ≤ h ≤ bn and for large enough n, we have for all t ∈ Bf ,

nψ(t)
λn(h)

IEK
(
X − t

h1/d

)
≤ γn + 2κ

√
nh

| log h|
f(t)ψ(t),

where γn → 0.

Proof. For any r > 0, we can split the centering term as follows in two parts:

nψ(t)
λn(h)

IEK
(
X − t

h1/d

)
=

nhψ(t)
λn(h)

∫
[−1/2,1/2]d

K(u)f(t+ uh1/d) du

≤ κnhψ(t)
λn(h)

sup
|u|≤1/2

t+uh1/d∈Bf

f(t+ uh1/d)I{f(t)≤hr}

+
κnhψ(t)
λn(h)

sup
|u|≤1/2

t+uh1/d∈Bf

f(t+ uh1/d)I{f(t)>hr}

=: γn(t, h) + ξn(t, h).

Now take 0 < δ < 1− β and choose τ > 0 such that

sup
an≤h≤bn

hτ(1−β−δ)

(nh)−1λn(h)
−→ 0. (7)

Note that such a τ > 0 exists, since the denominator does not converge faster to zero than a
negative power of n, as does h ∈ [an, bn]. We now study both terms ξn(t, h) and γn(t, h) for the
choice r = τ . For δ > 0 chosen as above, there are h0 > 0, c < ∞ such that for x, x + y ∈ Bf

with |y| ≤ h0,
c−1f1+δ(x) ≤ f(x+ y) ≤ cf1−δ(x). (8)

Moreover, for the choice of τ > 0 we obtain by condition (D.ii) that for all h small enough and
x ∈ Bf with f(x) ≥ hτ ,

f(x+ y) ≤ 2f(x), |y| ≤ h1/d. (9)

Therefore, in view of (9) and recalling the definition of λn(h), we get for t ∈ IRd that

ξn(t, h) ≤ 2κ

√
nh

| log h|
f(t)ψ(t). (10)
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Finally, using condition (WD.i) in combination with (7) and (8), it’s easy to show that

sup
t∈IRd

sup
an≤h≤bn

γn(t, h) =: γn −→ 0,

finishing the proof of the lemma. tu

To simplify notation we set

∆n := sup
an≤h≤bn

√
nh

| log h|
‖ψ(fn,h − IEfn,h)‖∞ ,

and set for any function g : IRd → IR and C ⊂ IRd, ‖g‖C := supt∈C |g(t)|. We start by showing
that choosing a suitable r > 0 it will be sufficient to consider the above supremum only over the
region

An := {t ∈ Bf : ψ(t) ≤ b−r
n } ⊂ IRd. (11)

Lemma 2.2. There exists an r > 0 such that with probability one,

sup
an≤h≤bn

√
nh

| log h|
‖ψ(fn,h − IEfn,h)‖IRd\An

−→ 0.

Proof. Choose r > 0 sufficiently large so that, eventually, brn ≤ n−2. Note that ψ(t) > b−r
n

implies that f(t) ≤ b
r/β
n , and consequently we get that f(t)ψ(t) ≤ f(t)1−β ≤ b

r(1/β−1)
n , such that

for β < 1/2 this last term is bounded above by n−2 for large n. Recalling Lemma 2.1 we can
conclude that

sup
an≤h≤bn

√
nh

| log h|
‖ψIEfn,h‖IRd\An

−→ 0,

and it remains to be shown that with probability one,

Yn := sup
an≤h≤bn

√
nh

| log h|
‖ψfn,h‖IRd\An

−→ 0.

It is obvious that

P{Yn 6= 0} ≤
n∑

i=1

P{d(Xi, A
c
n) ≤ bn},

where as usual d(x,A) = infy∈A |x− y|, x ∈ IRd. Then, since ψ(s) > b−r
n implies by (W.ii) that

ψ(t) ≥ c−1b
−r(1−δ)
n for n large enough, |s− t| ≤ bn and δ > 0, due to our choice of r, it is possible

to find a small δ > 0 such that, eventually, ψ(t) ≥ λ(n3). Hence, it follows using (2) that

P{Yn 6= 0} ≤ nP{ψ(X) ≥ λ(n3)} = O(n−2),

which via Borel-Cantelli implies that with probability one, Yn = 0 eventually. tu
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We now study the remaining part of the process ∆n, that is

∆′
n := sup

an≤h≤bn

√
nh

| log h|
‖ψ(fn,h − IEfn,h)‖An

.

We will handle the uniformity in bandwidth over the region An by considering smaller intervals
[hn,j , hn,j+1], where we set

hn,j := 2jan, n ≥ 1, j ≥ 0.

The following lemma shows that a finite number of such intervals is enough to cover [an, bn].

Lemma 2.3. If ln := max{j : hn,j ≤ 2bn}, then for n large enough, ln ≤ 2 log n and [an, bn] ⊂
[hn,0, hn,ln ].

Proof. Suppose ln > 2 log n, then there is a j0 > 2 log n such that hn,j0 ≤ 2bn, and
hence this j0 satisfies 4log nn−αL1(n) < hn,j0 ≤ 2n−µL2(n). Consequently, we must have
n ≤ 2nα−µL2(n)/L1(n), which for large n is impossible given that L2/L1 is slowly varying at
infinity. The second part of the lemma follows immediately after noticing that hn,0 = an and
bn ≤ hn,ln . tu

For each j ≥ 0, split An into the regions

A1
n,j :=

{
t ∈ An : f(t)ψ(t) ≤ ε1−β

n

√
| log hn,j+1|
nhn,j+1

}
,

A2
n,j :=

{
t ∈ An : 0 < ψ(t) ≤ ε−β

n

(
nhn,j+1

| log hn,j+1|

)β/2(1−β)
}
,

where we take εn = (log n)−1, n ≥ 2. Note that if fψ > L, by condition (WD.i), ψ ≤ L−β/(1−β),
implying that for all j ≥ 0, the union of A1

n,j and A2
n,j equals An. With (6) in mind, set for

0 ≤ j ≤ ln − 1 and i = 1, 2

∆(i)
n,j := sup

hn,j≤h≤hn,j+1

√
nh

| log h|
‖ψ(fn,h − IEfn,h)‖Ai

n,j
,

Φ(i)
n,j := sup

t∈Ai
n,j

sup
hn,j≤h≤hn,j+1

ψ(t)
λn(h)

n∑
i=1

K

(
Xi − t

h1/d

)
,

Ψ(i)
n,j := sup

t∈Ai
n,j

sup
hn,j≤h≤hn,j+1

nψ(t)
λn(h)

IEK
(
X − t

h1/d

)
.

In particular, we have
∆(i)

n,j ≤ Φ(i)
n,j + Ψ(i)

n,j , i = 1, 2,

and from Lemma 2.1 and the definition of A1
n,j , it follows that we can ignore the centering term

Ψ(1)
n,j . Hence, we get that

∆′
n ≤

(
δn + max

0≤j≤ln−1
Φ(1)

n,j

)
∨ max

0≤j≤ln−1
∆(2)

n,j , (12)
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with δn → 0, and we will prove stochastic boundedness of ∆′
n by showing it for both

max0≤j≤ln−1 Φ(1)
n,j and max0≤j≤ln−1 ∆(2)

n,j . Therefore, set

λn,j := λn(hn,j) =
√

2j

√
nan| log 2jan|, j ≥ 0,

and note that λn,j ≥ λ(n2j). Let’s start with the first term, Φ(1)
n,j . We clearly have for 0 ≤ j ≤

ln − 1 that

Φ(1)
n,j ≤ κ sup

t∈A1
n,j

ψ(t)
λn,j

n∑
i=1

I{|Xi − t| ≤ h
1/d
n,j } =: κΛn,j .

For k = 1, . . . , n, set Bn,j,k := A1
n,j ∩ {t : |Xk − t| ≤ h

1/d
n,j }, then it easily follows that

Λn,j = max
1≤k≤n

sup
t∈Bn,j,k

ψ(t)
λn,j

n∑
i=1

I{|Xi − t| ≤ h
1/d
n,j }.

Recall from (11) that ψ(t) ≤ b−r
n ≤ h−r

n,j on An for 0 ≤ j ≤ ln−1. Then it follows from conditions
(W.iii) and (WD.ii) that there is a ρ small such that (1 − ρ)ψ(t) ≤ ψ(s) ≤ (1 + ρ)ψ(t) and
f(s) ≤ (1 + ρ)f(t) if |s − t| ≤ h

1/d
n,j . In this way we obtain for t ∈ A1

n,j , |s − t| ≤ h
1/d
n,j and large

enough n that for a positive constant C1 > 1,

ψ(t) ≤ C1ψ(s) and f(s)ψ(s) ≤ C1ε
1−β
n

√
| log hn,j+1|
nhn,j+1

.

Hence, we can conclude that

Λn,j ≤ C1 max
1≤k≤n

ψ(Xk)
λn,j

n∑
i=1

I{|Xi −Xk| ≤ 2h1/d
n,j }I{Xk ∈ Ã1

n,j}, (13)

where Ã1
n,j := {t : f(t)ψ(t) ≤ C1ε

1−β
n

√
| log hn,j+1|/nhn,j+1}, and it follows that

max
0≤j≤ln−1

Λn,j ≤ C1 max
1≤k≤n

ψ(Xk)
λ(n)

+ C1 max
0≤j≤ln−1

max
1≤k≤n

ψ(Xk)
λn,j

Mn,j,kI{Xk ∈ Ã1
n,j}, (14)

whereMn,j,k :=
∑n

i=1 I{|Xi−Xk| ≤ 2h1/d
n,j }−1. Note that the first term is stochastically bounded

by assumption (2). Thus in order to show that max0≤j≤ln−1 Φ(1)
n,j is stochastically bounded, it

is enough to show that this is also the case for the second term in (14). As a matter of fact, it
follows from the following lemma that this term converges to zero in probability.

Lemma 2.4. We have for 1 ≤ k ≤ n and ε > 0,

max
0≤j≤ln−1

P{ψ(Xk)Mn,j,kI{Xk ∈ Ã1
n,j} ≥ ελn,j} = O(n−1−η),

where η > 0 is a constant depending on α and β only.
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Proof. Given Xk = t, Mn,j,k has a Binomial(n − 1, πn,j(t)) distribution, where πn,j(t) :=
P{|X − t| ≤ 2h1/d

n,j }. Furthermore, since for large enough n, ψ(t) ≤ C1b
−r
n ≤ b−r−1

n on An, it

follows for c > 1 and large n that f(s)/f(t) ≤ c, |s− t| ≤ b
1/d
n , so that

πn,j(t) ≤ 4dchn,jf(t).

Using the fact that the moment-generating function IE exp(sZ) of a Binomial(n, p)-variable Z is
bounded above by exp(npes), we can conclude that for t ∈ Ã1

n,j and any s > 0,

pn,j(t) := IP {ψ(Xk)Mn,j,k ≥ ελn,j‖Xk = t}

≤ exp
(
c4dnhn,jf(t)es − εsλn,j

ψ(t)

)
≤ exp

(
λn,j

ψ(t)
(C2ε

1−β
n es − εs)

)
, s > 0, t ∈ Ã1

n,j .

Choosing s = log(1/εn)/2 = log log n/2, we obtain for some n0 (which is independent of j) that

pn,j(t) ≤ exp
(
−ελn,j log log n

3ψ(t)

)
, n ≥ n0, t ∈ Ã1

n,j .

Setting B̃n,j := {t ∈ Ã1
n,j : ψ(t) ≤ λn,j/ log n}, it’s obvious that for any η̃ > 0,

max
0≤j≤ln−1

sup
t∈B̃n,j

pn,j(t) = O(n−η̃). (15)

Next, set C̃n,j := Ã1
n,j\B̃n,j = {t ∈ Ã1

n,j : λn,j/ log n < ψ(t)}, then using once more the fact that
ψ ≤ f−β, we have that ψf ≤ (log n/λn,j)1+θ on this set, where θ = β−1 − 2 > 0. By Markov’s
inequality, we then have for t ∈ C̃n,j ,

pn,j(t) ≤ 4dcε−1nhn,jf(t)ψ(t)/λn,j

≤ 4dcε−1(log n)1+θλ−θ
n,j/| log hn,j |

≤ 4dc′ε−1

(
log n
nan

)θ/2

, t ∈ C̃n,j . (16)

Further, note that by regular variation, λn,j/ log n ≥ λ[n(log n)−γ ],j for some γ > 0. Therefore,
we have from (2) that

P{ψ(Xk) ≥ λn,j/ log n} = O ((log n)γ/n) , k = 1, . . . , n.

Combining this with (15) and (16), we find that

max
0≤j≤ln−1

P{ψ(Xk)Mn,j,kI{Xk ∈ Ã1
n,j} ≥ ελn,j}

= max
0≤j≤ln−1

{∫
B̃n,j

pn,j(t)f(t)dt +
∫

C̃n,j

pn,j(t)f(t)dt

}
≤ O(n−η̃) +O

(
(log n/nan)θ/2

)
P{ψ(X) ≥ λn,j/ log n}

= O
(
n−1− θ

2
(1−α)(log n)γ+ θ

2L1(n)−
θ
2

)
≤ O(n−1− θ

3
(1−α)),
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proving the lemma. tu

It is now clear that max0≤j≤ln−1 Φ(1)
n,j is stochastically bounded under condition (2), and it

remains to be shown that this is also the case for max0≤j≤ln−1 ∆(2)
n,j .

Let αn be the empirical process based on the i.i.d sample X1, . . . , Xn. Then we have for any
measurable bounded function g : IRd → IR,

αn(g) :=
1√
n

n∑
i=1

(g(Xi)− IEg(X1)) .

For 0 ≤ j ≤ ln − 1, consider the following class of functions defined by

Gn,j :=
{
ψ(t)K

(
· − t

h1/d

)
: t ∈ A2

n,j , hn,j ≤ h ≤ hn,j+1

}
,

then obviously, ∥∥√nαn

∥∥
Gn,j

≥ λn,j∆
(2)
n,j ,

where as usual ‖
√
nαn‖Gn,j

= supg∈Gn,j
|
√
nαn(g)|. To show stochastic boundedness of ∆(2)

n,j , we
will use a standard technique for empirical processes, based on a useful exponential inequality
of Talagrand [14], in combination with an appropriate upper bound of the moment quantity
IE ‖
∑n

i=1 εig(Xi)‖Gn,j
, where ε1, . . . , εn are independent Rademacher random variables, inde-

pendent of X1, . . . , Xn.

Lemma 2.5. For each j = 0, . . . , ln − 1, the class Gn,j is a VC-class of functions with envelope
function

Gn,j := κε−β
n

(
nhn,j+1

| log hn,j+1|

)β/2(1−β)

that satisfies the uniform entropy condition

N (ε,Gn,j) ≤ Cε−ν−1, 0 < ε < 1,

where C and ν are positive constants (independent of n and j).

Proof. Consider the classes

Fn,j =
{
ψ(t) : t ∈ A2

n,j

}
,

Kn,j =
{
K

(
· − t

h1/d

)
: t ∈ A2

n,j , hn,j ≤ h ≤ hn,j+1

}
,

with envelope functions Fn,j := ε−β
n

(
nhn,j+1

| log hn,j+1|

)β/(2(1−β)
and κ respectively. Then Gn,j ⊂

Fn,jKn,j and it follows from our assumptions on K that Kn,j is a VC-class of functions. Fur-
thermore, it is easy to see that the covering number of Fn,j , which we consider as a class of
constant functions, can be bounded above as follows :

N
(
ε
√
Q(F 2

n,j),Fn,j , dQ

)
≤ C1ε

−1, 0 < ε < 1.
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Since Kn,j is a VC-class, we have for some positive constants ν and C2 <∞ that

N (εκ,Kn,j , dQ) ≤ C2ε
−ν .

Thus, the conditions of lemma A1 in Einmahl and Mason [3] are satisfied, and we obtain the
following uniform entropy bound for Gn,j :

N (ε,Gn,j) ≤ Cε−ν−1, 0 < ε < 1,

proving the lemma. tu

Now, observe that for all t ∈ A2
n,j ⊂ An and hn,j ≤ h ≤ hn,j+1, we have by condition (W.iii) for

large n,

IE
[
ψ2(t)K2

(
X − t

h1/d

)]
≤ 2IE

[
ψ2(X)K2

(
X − t

h1/d

)]
= 2

∫
IRd

ψ2(x)f(x)K2((x− t)/h1/d)dx.

Recalling that
∥∥ψfβ

∥∥
∞ ≤ 1, we see that this integral is bounded above by

2hn,j+1 ‖f‖1−2β
∞ ‖K‖2

2 =: Cβhn,j+1.

As the exponent β/2(1 − β) in the definition of Gn,j is strictly smaller than 1/2, it is easily
checked that by choosing the β in Proposition A.1 of Einmahl and Mason [3] to be equal to
Gn,j , and σ2

n,j = Cβhn,j+1, there exists an n0 ≥ 1 so that the assumptions of Proposition A.1
in Einmahl and Mason [3] are satisfied for all 0 ≤ j ≤ ln − 1 and n ≥ n0. Therefore, we can
conclude that

IE‖
n∑

i=1

εig(Xi)‖Gn,j ≤ C ′√nhn,j log n, n ≥ n0, 0 ≤ j ≤ ln − 1,

where C ′ is a positive constant depending on α, β, ν and C only (where the β is again the one
from condition (WD.i)). Moreover, as for 0 ≤ j ≤ ln − 1 we have | log hn,j | ≥ | log bn| ∼ µ log n,
we see that for some n1 ≥ n0,

IE‖
n∑

i=1

εig(Xi)‖Gn,j ≤ C ′′λn,j , 0 ≤ j ≤ ln − 1. (17)

Recalling that ∆(2)
n,j ≤ ‖

∑n
i=1 εig(Xi)‖Gn,j/λn,j it follows from Markov’s inequality that the

variables ∆(2)
n,j are stochastically bounded for all 0 ≤ j ≤ ln − 1. However, to prove that the

maximum of these variables is stochastically bounded too, we need to use more sophisticated
tools. One of them is the inequality of Talagrand [14] mentioned above. (For a suitable version,
refer to Inequality A.1 in [3].) Employing this inequality, we get that

P

{
max

1≤m≤n

∥∥√mαm

∥∥
Gn,j

≥ A1

(
IE‖

n∑
i=1

εig(Xi)‖Gn,j + x

)}
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≤ 2

[
exp

(
−A2x

2

nσ2
n,j

)
+ exp

(
−A2x

Gn,j

)]
,

where A1, A2 are universal constants. Next, recall that σ2
n,j = 2Cβhn,j and that Gn,j ≤

cε−β
n

√
nhn,j/| log hn,j |, then choosing x = ρλn,j (ρ > 1), we can conclude from the foregoing

inequality and (17) that for large n,
IP
{∥∥√nαn

∥∥
Gn,j

≥ A1(C ′′ + ρ)λn,j

}
≤ 2

[
exp

(
−A2ρ

2

2Cβ

λ2
n,j

nhn,j

)
+ exp

(
−A2ρ

λn,j

Gn,j

)]

≤ 4 exp
(
−A2ρ

2

2Cβ
| log hn,j |

)
, (18)

where we used the fact that inf0≤j≤ln−1 λn,j/(Gn,j | log hn,j |) → ∞ as n ↗ ∞. Finally, since
‖
√
nαn‖Gn,j

≥ λn,j∆
(2)
n,j , we just showed that

IP
{

max
0≤j<ln

∆(2)
n,j ≥M

}
≤

ln−1∑
j=0

IP
{∥∥√nαn

∥∥
Gn,j

≥ λn,jM
}
≤ 4n−2, (19)

provided we choose M ≥ A1(C ′′ +
√

5µCβ/A2) and n is large enough. It’s now obvious that
max0≤j≤ln−1 ∆(2)

n,j is stochastically bounded, which, in combination with (14) and the result in
lemma 2.4 proves Theorem 1.1. tu

3 Proof of Theorem 1.2

In view of Lemma 2.2 it is sufficient to prove that under assumption (4), we have with probability
one that

lim sup
n→∞

∆′
n ≤M ′,

for a suitable positive constant M ′ > 0. Recalling relation (12), we only need to show that for
suitable positive constants M ′

1,M
′
2,

lim sup
n→∞

max
0≤j≤ln−1

Φ(1)
n,j ≤M ′

1, a.s, (20)

and
lim sup

n→∞
max

0≤j≤ln−1
∆(2)

n,j ≤M ′
2, a.s. (21)

The result in (21) follows easily from (19) and the Borel-Cantelli lemma, and as is shown below,
it turns out that (20) holds with M ′

1 = 0, i.e this term goes to zero. Recall now from (14) that

max
0≤j≤ln−1

Φ(1)
n,j ≤ C1κ max

1≤k≤n

ψ(Xk)
λ(n)
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+ C1κ max
0≤j≤ln−1

max
1≤k≤n

ψ(Xk)
λn,j

Mn,j,kI{Xk ∈ Ã1
n,j},

where Mn,j,k =
∑n

i=1 I{|Xi −Xk| ≤ 2h1/d
n,j } − 1. From condition (4) and the assumption on an

we easily get that with probability one, ψ(Xk)/λ(n) → 0, and consequently we also have that
max1≤k≤n ψ(Xk)/λ(n) → 0, finishing the study of the first term. To simplify notation, set

Zn := max
0≤j≤ln−1

max
1≤k≤n

ψ(Xk)
λn,j

Mn,j,kI{Xk ∈ Ã1
n,j},

take nk = 2k, k ≥ 1, and set h′k,j := hnk,j and l′k := lnk+1
. Then note that

max
nk≤n≤nk+1

Zn ≤ max
0≤j<l′k

max
1≤i≤nk+1

ψ(Xi)
λnk,j

M ′
k,j,iI{Xi ∈ A′

k,j},

where M ′
k,j,i =

∑nk+1

m=1 I{|Xm − Xi| ≤ 2h′1/d
k,j } − 1 and A′

k,j = {t : f(t)ψ(t) ≤ C1ε
1−β
nk√

| log h′k,j |/nkh
′
k,j}, and after some minor modifications, we obtain similarly to Lemma 2.4

that for ε > 0,

P
{

max
nk≤n≤nk+1

Zn ≥ ε

}
= O

(
l′kn

−η′

k

)
, η′ > 0,

which implies again via Borel-Cantelli that Zn → 0 almost surely, proving (20) with M ′
1 = 0. tu

Acknowledgements. The authors thank the referee for a careful reading of the manuscript.
Thanks are also due to David Mason for some useful suggestions.

References

[1] Deheuvels, P. (2000). Uniform limit laws for kernel density estimators on possibly un-
bounded intervals. Recent advances in reliability theory (Bordeaux, 2000), 477–492, Stat.
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