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Abstract

Suppose that α ∈ (0, 2) and that X is an α-stable-like process on Rd. Let µ be a signed
measure on Rd belonging to the class Kd,α and Aµ

t be the continuous additive functional of
X associated with µ. In this paper we show that the Feynman-Kac semigroup {Tµ

t : t ≥ 0}
defined by

Tµ
t f(x) = Ex

(
e−Aµ

t f(Xt)
)

has a density qµ and that there exist positive constants c1, c2, c3, c4 such that

c1e
−c2tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

≤ qµ(t, x, y) ≤ c3e
c4tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

for all (t, x, y) ∈ (0,∞)×Rd×Rd. We also provide similar estimates for the densities of two
other kinds of Feynman-Kac semigroups of X.
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1 Introduction

Suppose that X = (Xt,Px) is a Brownian motion on Rd and that V is a function on Rd

belonging to the Kato class of X, i. e., a function satisfying the condition

lim
t↓0

sup
x∈Rd

Ex

∫ t

0
|V |(Xs)ds = 0.

It is well known (see [11] for instance) that the Feynman-Kac semigroup {T V
t : t ≥ 0} with

potential V

T V
t f(x) = Ex

(
exp(−

∫ t

0
V (Xs)ds)f(Xt)

)
,

has a transition density qV (t, x, y) with respect to the Lebesgue measure and that qV has both
an upper and a lower Gaussian estimates, that is there exist positive constants c1, c2, c3, c4 such
that

c1e
−c2tt−

d
2 exp(−3|x− y|2

4t
) ≤ qV (t, x, y) ≤ c3e

c4tt−
d
2 exp(−|x− y|2

4t
) (1.1)

for all (t, x, y) ∈ (0,∞)×Rd×Rd. This result can be easily generalized (see [2] for instance) to
the case when V is replaced by a signed measure satisfying

lim
t↓0

sup
x∈Rd

∫ t

0

∫
Rd

t−
d
2 exp(−|x− y|2

2t
)|µ|(dy)ds = 0

and
∫ t
0 V (Xs)ds is replaced by the continuous additive functional Aµ

t of X associated with µ.

Now suppose that α ∈ (0, 2) and that X = (Xt,Px) is a symmetric α-stable process on Rd. The
question that we are going to address in this paper is the following: can one establish two-sided
estimates for the density of the Feynman-Kac semigroup of the symmetric α-stable process X?
As far as we know, this question has not been addressed in the literature. The proof of (1.1) in
[11] and [2] can not be adapted to the case of discontinuous stable processes. It seems that, to
answer the question above, one has to use some new ideas. In this paper, we are going to tackle
the question above by adapting an idea used in [13] and [14] to establish heat kernel estimates
for diffusions to the present case. Actually, instead of dealing with symmetric stable processes,
we are going to deal with the more general stable-like processes introduced in [4].

The content of this paper is organized as follows. In section 2, we first recall the definition of the
Kato class with respect to symmetric α-stable processes and some basic facts about stable-like
processes, and then we present some preliminary results on Feynman-Kac semigroups. In section
3 we establish two-sided estimates on the density of Feynman-Kac semigroups with potentials
given by measures belonging to the Kato class. In the last section we deal with two other kinds
of Feynman-Kac semigroups of stable-like processes. The first kind consists of Feynman-Kac
semigroups given by purely discontinuous additive functionals, and the second kind consists of
Feynman-Kac semigroups given by continuous additive functionals of zero energy.
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In this paper we will use the following convention on the labeling of constants. The values
of the constants M1,M2, · · · will remain the same throughout this paper, while the values of
the constants C1, C2, · · · might change from one appearance to the next. The labeling of the
constants C1, C2, · · · starts anew in the statement of each result.

2 Kato Class and Basic Properties of Feynman-Kac Semigroups

In this paper we will always assume that α ∈ (0, 2). We will use X0 = {X0
t ,P0

x} to denote a
symmetric α-stable process in Rd whose transition density p0(t, x, y) = p0(t, x− y) with respect
to the Lebesgue measure satisfies∫

Rd

eix·ξp0(t, x)dx = e−t|ξ|α , t > 0.

It is known (see [3]) that there exist positive constants M1 < M2 such that

M1t
− d

α

(
1 ∧ t1/α

|x− y|

)d+α

≤ p0(t, x, y) ≤ M2t
− d

α

(
1 ∧ t1/α

|x− y|

)d+α

(2.1)

for all (t, x, y) ∈ (0,∞)×Rd ×Rd. For any λ > 0, we define

G0
λ(x, y) = G0

λ(x− y) =
∫ ∞

0
e−λtp0(t, x− y)dt

for all x, y ∈ Rd. When α < d, the process X0 is transient and its potential density G0(x, y) =
G0(x− y) is given by

G0(x− y) =
∫ ∞

0
p0(t, x− y)dt = 2−απ−

d
2 Γ
(

d− α

2

)
Γ
(α

2

)−1
|x− y|α−d.

The Dirichlet form (E0,F) of X0 is given by

E0(u, v) =
1
2
A(d,−α)

∫
Rd

∫
Rd

(u(x)− u(y))(v(x)− v(y))
|x− y|d+α

dxdy

F =
{

u ∈ L2(Rd) :
∫
Rd

∫
Rd

(u(x)− u(y))2

|x− y|d+α
dxdy < ∞

}
,

where

A(d,−α) =
|α|Γ(d+α

2 )
21−α πd/2Γ(1− α

2 )
.

For any function V on Rd and t > 0, we define

NV (t) = sup
x∈Rd

∫ t

0

∫
Rd

p0(s, x, y)|V (y)|dyds.
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By a signed measure we mean in this paper the difference of two nonnegative measures at most
one of which can have infinite total mass. For any signed measure on Rd, we use µ+ and µ− to
denote its positive and negative parts, and |µ| = µ+ + µ− its total variation. For any t > 0, we
define

Nµ(t) = sup
x∈Rd

∫ t

0

∫
Rd

p0(s, x, y)|µ|(dy)ds.

Definition 2.1 We say that a function V on Rd belongs to the Kato class Kd,α if limt↓0 NV (t) =
0. We say that a signed Radon measure µ on Rd belongs to the Kato class Kd,α if limt↓0 Nµ(t) =
0.

Rigorously speaking a function V in Kd,α may not give rise to a signed measure µ in Kd,α since
it may not give rise to a signed measure at all. However, for the sake of simplicity we use the
convention that whenever we write that a signed measure µ belongs to Kd,α we are implicitly
assuming that we are covering the case of all the functions in Kd,α as well.

The following result is well known, see [1] and [12] for instance.

Proposition 2.1 Suppose that µ is a signed measure on Rd. Then µ ∈ Kd,α if and only if

lim
λ→∞

sup
x∈Rd

∫
Rd

G0
λ(x, y)|µ|(dy) = 0.

When α < d, µ ∈ Kd,α is also equivalent to the condition

lim
r→0

sup
x∈Rd

∫
|x−y|<r

|µ|(dy)
|x− y|d−α

= 0.

We assume from now on that m is a measure on Rd given by m(dx) = M(x)dx, where M is a
function satisfying

M3 ≤ M(x) ≤ M4, x ∈ Rd (2.2)

for some positive constants M3 < M4. We will fix a symmetric function c(x, y) on Rd × Rd

which is bounded between two fixed positive constants. If for any u, v ∈ F we define

E(u, v) =
∫
Rd

∫
Rd

c(x, y)(u(x)− u(y))(v(x)− v(y))
|x− y|d+α

m(dx)m(dy),

then (E ,F) is a regular Dirichlet form on L2(Rd,m). It is shown in [4] that, associated with
this Dirichlet form, there is an m-symmetric Hunt process X = {Xt,Px} on Rd which can
start from any point x ∈ Rd. We will use {Mt; t ≥ 0} to denote the natural filtration of X.
The process X is called an α-stable-like process in [4]. It is also shown in [4] that the process
X admits a transition density p(t, x, y) with respect to m and that p is jointly continuous on
(0,∞)×Rd ×Rd and satisfies the condition

M5t
− d

α

(
1 ∧ t1/α

|x− y|

)d+α

≤ p(t, x, y) ≤ M6t
− d

α

(
1 ∧ t1/α

|x− y|

)d+α

(2.3)
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for all (t, x, y) ∈ (0, 1] ×Rd ×Rd. By using the scaling property (see the proof of Proposition
4.1 in [4]), one can show that (2.3) is valid for all (t, x, y) ∈ (0,∞)×Rd ×Rd. We may and do
assume that M5 < 1 < M6.

From the display above and estimates (2.1) one can easily see that a signed measure µ is in Kd,α

if and only if

lim
t↓0

sup
x∈Rd

∫ t

0

∫
Rd

p(s, x, y)|µ|(dy)ds = 0.

By repeating the argument in the proof of Theorem 2.1 in [2], we can show the following

Lemma 2.2 Let µ be a signed Radon measure on Rd. Then µ ∈ Kd,α if and only the following
conditions are satisfied:

1. |µ| is a smooth measure in the sense of [9],

2. the continuous additive functional At associated with µ can be defined without exceptional
set,

3. limt↓0 supx∈Rd Ex|A|t = 0, where |A|t = A+
t +A−

t , A+
t and A−

t being the positive continuous
additive functionals of X associated with µ+ and µ− respectively.

Furthermore, if µ ∈ Kd,α and At is the continuous additive functional of X associated with µ,
then

ExAt =
∫ t

0

∫
Rd

p(s, x, y)µ(dy)ds, ∀(t, x) ∈ (0,∞)×Rd.

Proof. We omit the details. 2

In the sequel, whenever we have a signed measure µ ∈ Kd,α, we will use Aµ
t to denote the

continuous additive functional of X associated with µ. Using Khas’minskii’s lemma (see Lemma
2.6 of [2]), we can easily show the following

Lemma 2.3 Suppose that µ ∈ Kd,α and Aµ
t is the continuous additive functional of X associated

with µ. There exist positive constants C1 and C2, depending on µ only via the rate at which
Nµ(t) goes to zero, such that

sup
x∈Rd

Ex

(
eA

|µ|
t

)
≤ C1e

C2t, t > 0.

The meaning of the phrase “depending on µ only via the rate at which Nµ(t) goes to zero” will
become clear in the proof of Theorem 3.3. It roughly means that if w(t) is a increasing function
on (0,∞) with limt→0 w(t) = 0, then there exist positive constants C1 and C2 such that for any
signed measure µ with

Nµ(t) ≤ w(t), t > 0,
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we have
sup

x∈Rd

Ex

(
eA

|µ|
t

)
≤ C1e

C2t, t > 0.

For any µ ∈ Kd,α, we define the Feynman-Kac semigroup {Tµ
t : t ≥ 0} with potential µ by

Tµ
t f(x) = Ex

(
e−Aµ

t f(Xt)
)

.

When µ is given by µ(dx) = U(x)dx for some function U , we will sometimes write Tµ
t as TU

t .

The following result is well known, see [12] and [5].

Theorem 2.4 Suppose that µ ∈ Kd,α, then

1. For any p ∈ [1,∞), {Tµ
t : t ≥ 0} is a strongly continuous semigroup in Lp(Rd,m);

2. For each t > 0, Tµ
t maps L∞(Rd,m) into bounded continuous functions on Rd;

3. For any p ∈ [1,∞) and t > 0, Tµ
t maps Lp(Rd,m), p ∈ [0,∞), into bounded continuous

functions on Rd which converges to zero at infinity, and there exist positive constants C1

and C2, depending on µ only via the rate at which Nµ(t) goes to zero, such that

‖Tµ
t ‖p,p ≤ ‖Tµ

t ‖∞,∞ ≤ C1e
C2t, t > 0,

where, for any p, q ∈ [1,∞], ‖Tµ
t ‖p,q stands for the norm of Tµ

t as an operator from
Lp(Rd,m) into Lq(Rd,m).

Using an argument similar to that of the proof of Theorem 3.1 in [2], we can show the following

Theorem 2.5 For any µ ∈ Kd,α, there exists a function qµ(t, x, y) such that

1. qµ is jointly continuous on (0,∞)×Rd ×Rd;

2. there exist positive constants C1 and C2 depending on µ only via the rate at which Nµ(t)
goes to zero such that

0 < qµ(t, x, y) ≤ C1e
C2tt−

d
α , ∀(t, x, y) ∈ (0,∞)×Rd ×Rd;

3. Tµ
t f(x) =

∫
Rd qµ(t, x, y)f(y)m(dy) for all (t, x) ∈ (0,∞)×Rd and all bounded function f

on Rd;

4.
∫
Rd qµ(t, x, z)qµ(s, z, y)m(dz) = qµ(t + s, x, y) for all t, s > 0 and (x, y) ∈ Rd ×Rd;

5. qµ(t, x, y) is symmetric in x and y;
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6. if f is a bounded function continuous at x ∈ Rd, then

lim
t↓0

∫
Rd

qµ(t, x, y)f(y)m(dy) = f(x).

Proof. We omit the details. 2

Corollary 2.6 For any µ ∈ Kd,α, the function qµ in the theorem above satisfies the equation

qµ(t, x, y) = p(t, x, y)−
∫ t

0

∫
Rd

p(s, x, z)qµ(t− s, z, y)µ(dz)ds, (2.4)

for all (t, x, y) ∈ (0,∞)×Rd ×Rd.

Proof. Since for any t > 0

e−Aµ
t = 1−

∫ t

0
e−(Aµ

t −Aµ
s )dAµ

s ,

we have

Ex

(
e−Aµ

t f(Xt)
)

= Exf(Xt)−Ex

(
f(Xt)

∫ t

0
e−(Aµ

t −Aµ
s )dAµ

s

)
for all (t, x) ∈ (0,∞)×Rd and all bounded functions f on Rd. Now the conclusion of the corollary
follows easily from the Markov property, Fubini’s theorem and the two theorems above. 2

When the measure µ is given by µ(dx) = U(x)dx form some function U , we will sometimes write
qµ as qU .

3 Two-sided Estimates for Densities of Local Feynman-Kac
transforms

In this section we shall establish two-sided estimates for the densities of Feynman-Kac semigroups
with potentials belonging to Kd,α. The following elementary lemma will play an important role.

Lemma 3.1 Suppose that a, b, c, d are positive numbers. If a < d and c < b, then we have

(1 ∧ a

b
)(1 ∧ d

c
) ≤ (1 ∧ a

c
)(1 ∧ d

b
). (3.1)

Proof. We prove this lemma by looking at all the different cases.

In the first case we assume that a ≥ b. In this case we have c < b ≤ a < d, so the left and right
hand sides of (3.1) are both equal to 1. Thus (3.1) is valid in this case.

In the second case we assume that c ≤ a ≤ b. We further divide this case into two subcases. In
the first subcase we assume that c ≤ a ≤ b ≤ d. In this subcase the left hand side of (3.1) is equal
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to a
b and the right hand side is equal to 1. In the second subcase we assume that c ≤ a < d ≤ b.

In this subcase the left hand side of (3.1) is equal to a
b and the right hand side is equal to d

b .
Thus (3.1) is valid in this case.

In the third case we assume that a ≤ c. We further divide this case into three subcases. In the
first subcase we assume that a ≤ c < b ≤ d. In this subcase the left hand side of (3.1) is equal to
a
b and the right hand side is equal to a

c . In the second subcase we assume that a ≤ c ≤ d ≤ b. In
this subcase the left hand side of (3.1) is equal to a

b and the right hand side is equal to ad
bc ≥

a
b .

In the third subcase we assume that a < d ≤ c < b. In this subcase the left and right hand sides
of (3.1) are both equal to ad

bc . Thus (3.1) is also valid in this case. 2

The following lemma is similar to Lemma 3.1 of [14] and is crucial in establishing the main
estimates of this paper.

Lemma 3.2 There exists a positive constant C depending only on d and α such that for any
measure ν on Rd and (t, x, y) ∈ (0,∞)×Rd ×Rd,

∫ t

0

∫
Rd

s−
d
α

(
1 ∧ s1/α

|x− z|

)d+α

(t− s)−
d
α

(
1 ∧ (t− s)1/α

|z − y|

)d+α

ν(dz)ds

≤ CM−1
1 t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

Nν(
t

2
).

Proof. Put

J(t, x, y) =
∫ t

0

∫
Rd

s−
d
α

(
1 ∧ s1/α

|x− z|

)d+α

(t− s)−
d
α

(
1 ∧ (t− s)1/α

|z − y|

)d+α

ν(dz)ds.

We can rewrite J as

J(t, x, y) =

(∫ t
2

0
+
∫ t

t
2

)∫
Rd

· · · ν(dz)ds := J1(t, x, y) + J2(t, x, y).

We estimate J1(t, x, y) by estimating the integrand separately on the region

R1 := {(s, z) : s ∈ (0,
t

2
), |z − y| ≥ 1

2
|x− y|}

and the region

R2 := {(s, z) : s ∈ (0,
t

2
), |z − y| < 1

2
|x− y|}.
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On R1 we have

s−
d
α

(
1 ∧ s1/α

|x− z|

)d+α

(t− s)−
d
α

(
1 ∧ (t− s)1/α

|z − y|

)d+α

≤ 2
d
α s−

d
α

(
1 ∧ s1/α

|x− z|

)d+α

t−
d
α

(
1 ∧ 2t1/α

|x− y|

)d+α

≤ 2
d
α

+d+αs−
d
α

(
1 ∧ s1/α

|x− z|

)d+α

t−
d
α

(
1 ∧ t1/α

|x− y|

)d+α

.

On R2 we have |x− z| ≥ |x− y| − |y − z| ≥ 1
2 |x− y|. So by applying Lemma 3.1 with a = s1/α,

b = |x− z|, c = |z − y| and d = (t− s)1/α we get that

s−
d
α

(
1 ∧ s1/α

|x− z|

)d+α

(t− s)−
d
α

(
1 ∧ (t− s)1/α

|z − y|

)d+α

≤ s−
d
α

(
1 ∧ s1/α

|z − y|

)d+α

(t− s)−
d
α

(
1 ∧ (t− s)1/α

|x− z|

)d+α

≤ 2
d
α s−

d
α

(
1 ∧ s1/α

|y − z|

)d+α

t−
d
α

(
1 ∧ 2t1/α

|x− y|

)d+α

≤ 2
d
α

+d+αs−
d
α

(
1 ∧ s1/α

|y − z|

)d+α

t−
d
α

(
1 ∧ t1/α

|x− y|

)d+α

.

Thus we have

J1(t, x, y)

≤ 2
d
α

+d+αt−
d
α

(
1 ∧ t1/α

|x− y|

)d+α ∫ t
2

0

∫
Rd

s−
d
α

(
(1 ∧ s1/α

|x− z|
) + (1 ∧ s1/α

|y − z|
)

)d+α

ν(dz)ds

≤ M−1
1 2

d
α

+d+α+1Nν(
t

2
)t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

.

By a similar argument we get

J2(t, x, y) ≤ M−1
1 2

d
α

+d+α+1Nν(
t

2
)t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

.

Consequently we have

J(t, x, y) ≤ M−1
1 2

d
α

+d+α+2Nν(
t

2
)t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

(3.2)

for all (t, x, y) ∈ (0,∞)×Rd ×Rd. 2
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Theorem 3.3 For any µ ∈ Kd,α, there exists a positive constant T , depending on µ only via
the rate at which Nµ(t) goes to zero, such that

C1t
− d

α

(
1 ∧ t1/α

|x− y|

)d+α

≤ qµ(t, x, y) ≤ C2t
− d

α

(
1 ∧ t1/α

|x− y|

)d+α

for some constants C1 and C2 depend only on M5 and for all (t, x, y) ∈ (0, T ]×Rd ×Rd.

Proof. For (t, x, y) ∈ (0,∞)×Rd ×Rd, we define In(t, x, y) recursively for n ≥ 0 by

I0(t, x, y) = p(t, x, y),

In+1 =
∫ t

0

∫
Rd

p(s, x, z)In(t− s, z, y)µ(dz)ds.

We claim that there exists a positive constant T , depending on µ only via the rate at which
Nµ(t) goes to zero, such that for all n ≥ 1 and (t, x, y) ∈ (0, T ]×Rd ×Rd

In(t, x, y) ≤ (
M5

2
)nt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

. (3.3)

We will prove this claim by induction. In fact, for n = 1, we have

|I1(t, x, y)| = |
∫ t

0

∫
Rd

p(s, x, z)p(t− s, z, y)µ(dz)ds|

≤ M2
6

∫ t

0

∫
Rd

s−
d
α

(
1 ∧ s1/α

|x− z|

)d+α

(t− s)−
d
α

(
1 ∧ (t− s)1/α

|z − y|

)d+α

|µ|(dz)ds.

Applying Lemma 3.2 we get that there exists a constant c1 > 0 depending only on d and α such
that

|I1(t, x, y)| ≤ c1M
−1
1 M2

6 Nµ(
t

2
)t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

.

Take T > 0 small enough so that

c1M
−1
1 M2

6 Nµ(
t

2
) ≤ M5

2
, t ≤ T.

Obviously, this T depends on µ only via the rate at which Nµ(t) goes to zero and

|I1(t, x, y)| ≤ M5

2
t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

for all (t, x, y) ∈ (0, T ] ×Rd ×Rd. Thus the claim above is valid for n = 1. Now suppose that
the claim is valid for n. Then we have

|In+1(t, x, y)| = |
∫ t

0

∫
Rd

p(s, x, z)In(t− s, z, y)µ(dz)ds|

≤ M6(
M5

2
)n

∫ t

0

∫
Rd

s−
d
α

(
1 ∧ s1/α

|x− z|

)d+α

(t− s)−
d
α

(
1 ∧ (t− s)1/α

|z − y|

)d+α

|µ|(dz)ds.
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Applying Lemma 3.2 again we get that

|In+1(t, x, y)| ≤ c1M
−1
1 M6(

M5

2
)nNµ(

t

2
)t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

≤ (
M5

2
)n+1t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

for all (t, x, y) ∈ (0, T ]×Rd ×Rd. Therefore the claim above is valid.

It follows from the claim above that, for (t, x, y) ∈ (0, T ]×Rd×Rd, the series
∑∞

n=0 |In(t, x, y)|
is uniformly absolutely convergent and

∞∑
n=0

|In(t, x, y)| ≤
∞∑

n=0

(
M5

2
)nt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

:= c2t
− d

α

(
1 ∧ t1/α

|x− y|

)d+α

.

Using Corollary 2.6 and Lemma 3.2 we see that

qµ(t, x, y) =
∞∑

n=0

(−1)nIn(t, x, y) ≤ c2t
− d

α

(
1 ∧ t1/α

|x− y|

)d+α

for all (t, x, y) ∈ (0, T ]×Rd ×Rd.

Using the claim above again we get that, for (t, x, y) ∈ (0, T ]×Rd ×Rd,

∞∑
n=1

|In(t, x, y)| ≤ M5

2−M5
t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

.

Therefore we have

qµ(t, x, y) ≥ 1−M5

2−M5
t−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

for all (t, x, y) ∈ (0, T ]×Rd ×Rd. 2

As a consequence of the theorem above and the semigroup property (Theorem 2.5.4), we imme-
diately get the following

Theorem 3.4 For any µ ∈ Kd,α, there exist positive constant C1, C2, C3, C4, depending on µ

only via the rate at which Nµ(t) goes to zero, such that

C1e
−C2tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

≤ qµ(t, x, y) ≤ C3e
C4tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

for all (t, x, y) ∈ (0,∞)×Rd ×Rd.
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4 Feynman-Kac Semigroups Given by Discontinuous Additive
Functionals and Continuous Additive Functionals of Zero En-
ergy

We first deal with a class of Feynman-Kac semigroups given by a purely discontinuous additive
functional. To do this, we need to recall a definition and introduce some notations.

Definition 4.1 Suppose that F is a function on Rd ×Rd. We say that F belongs to the class
Jd,α if F is bounded, vanishing on the diagonal, and the function

x 7→
∫
Rd

|F (x, y)|
|x− y|d+α

dy

belongs to Kd,α.

It is easy to see from the definition above that if F ∈ Jd,α, then e−F is also in Jd,α.

The process X has a Lévy system (N,H) given by Ht = t and

N(x, dy) = 2c(x, y)|x− y|−(d+α)m(dy),

that is, for any nonnegative function f on Rd ×Rd vanishing on the diagonal

Ex

∑
s≤t

f(Xs−, Xs)

 = Ex

∫ t

0

∫
Rd

2c(Xs, y)f(Xs, y)
|Xs − y|d+α

m(dy)ds

for every x ∈ Rd and t > 0.

For any F belonging to Jd,α, we put

BF
t =

∑
s≤t

F (Xs−, Xs), t ≥ 0.

We can define the following so-called non-local Feynman-Kac semigroup

SF
t f(x) = Ex

(
e−BF

t f(Xt)
)

.

This semigroup has been studied in [12] and [6].

Theorem 4.1 Suppose that F ∈ Jd,α is a symmetric function. The semigroup {SF
t , t ≥ 0}

admits a density kF (t, x, y) with respect to m and that kF is jointly continuous on (0,∞)×Rd×
Rd. Furthermore, there exist positive constants C1, C2, C3 and C4 such that

C1e
−C2tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

≤ kF (t, x, y) ≤ C3e
C4tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

for all (t, x, y) ∈ (0,∞)×Rd ×Rd.
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Proof. Put G = e−F − 1 and

V (x) =
∫
Rd

2c(x, y)G(x, y)
|x− y|d+α

m(dy).

Using the definition of Lévy systems we can see that BG
t − AV

t is a Px-martingale for every
x ∈ Rd. It follows from the Doleans-Dade formula that

Mt = e−BF
t −AV

t (4.1)

is a local martingale under Px for every x ∈ Rd. Mt is a clearly a multiplicative functional, so
Mt is supermartingale multiplicative functional of X. Therefore by Theorem 62.19 of [10], Mt

defines a family of probability measures {P̃x, x ∈ Rd} by dP̃x = MtdPx on Mt. We will use
X̃ = (Xt, P̃x) denote this new process. It follows from [6] that X̃ is a symmetric Hunt process
on Rd whose Dirichlet form (Ẽ , F̃) is given by F̃ = F and

Ẽ(u, u) =
∫
Rd

∫
Rd

e−F (x,y)c(x, y)(u(x)− u(y))2

|x− y|d+α
m(dx)m(dy), u ∈ F .

Thus X̃ is an α-stable-like process in the sense of [4]. It follows from (4.1) that for any nonneg-
ative function f on Rd, any t > 0 and any x ∈ Rd we have

Ex

(
e−BF

t f(Xt)
)

= Ẽx

(
eAV

t f(Xt)
)

.

Therefore SF
t can be regarded as a Feynman-Kac semigroup of X̃ with a potential −V . Now

our assertion follows immediately from Theorem 3.4. 2

Now we deal with Feynman-Kac semigroups given by continuous additive functionals of zero
energy. To do this, we need to recall some facts from the theory of Dirichlet forms.

We denote by Fe the family of functions u on Rd that is finite almost everywhere and there is
an E-Cauchy sequence {un} ⊂ F such that limn→∞ un = u almost everywhere on Rd. (E ,Fe)
is called the extended Dirichlet space of (E ,F). It is well known that any u ∈ Fe has a quasi-
continuous version ũ. In this paper, whenever we talk about a function u ∈ Fe, we implicitly
assume that we are dealing with its quasi-continuous version. It is known (see [9]) that, for any
u ∈ Fe, u(Xt) has the following Fukushima’s decomposition

u(Xt) = u(X0) + Mu
t + Nu

t , t ≥ 0.

Here Mu
t is a martingale additive functional of X and Nu

t is a continuous additive functional of
X with zero quadratic variation. Note that in general, Nu

t is not a process of finite variation.
The martingale part Mu

t is given by

Mu
t = lim

n→∞

 ∑
0<s≤t

(u(Xs)− u(Xs−))1{|u(Xs)−u(Xs−)|>1/n}

−
∫ t

0

(∫
{y∈Rd:|u(y)−u(Xs)|>1/n}

2c(Xs, y)(u(y)− u(Xs))
|Xs − y|d+α

m(dy)

)
ds

}
.
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Let µ<u> be the Revuz measure associated with the sharp bracket positive continuous additive
functional < Mu >. Then

µ<u>(dx) =
∫
Rd

2c(x, y)(u(x)− u(y))2

|x− y|d+α
m(dy)m(dx).

It follows from [8] that when u ∈ Fe satisfies the condition µ<u> ∈ Kd,α, the additive functionals
Mu

t and Nu
t can be taken as additive functionals in the strict sense.

For any quasi-continuous function u ∈ Fe with µ<u> ∈ Kd,α, we will consider the following
Feynman-Kac semigroup {Ru

t : t ≥ 0}:

Ru
t f(x) = Ex

(
eNu

t f(Xt)
)
, t ≥ 0.

This semigroup has been studied in [7].

Theorem 4.2 Suppose that u is bounded quasi-continuous function belonging to Fe and that
µ<u> ∈ Kd,α. The semigroup {Ru

t , t ≥ 0} admits a density ru(t, x, y) with respect to m and ru

is jointly continuous on (0,∞)×Rd×Rd. Furthermore, there exist positive constants C1, C2, C3

and C4 such that

C1e
−C2tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

≤ ru(t, x, y) ≤ C3e
C4tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

for all (t, x, y) ∈ (0,∞)×Rd ×Rd.

Proof. Put ρ(x) = e−u(x) and ρ(∂) = 1. It is easy to check that ρ− 1 ∈ Fe. Thus if we define
Mρ := Mρ−1 and Nρ := Nρ−1, then we have the Fukushima’s decomposition for ρ(Xt):

ρ(Xt) = ρ(X0) + Mρ
t + Nρ

t .

Define a square integrable martingale M by

Mt =
∫ t

0

1
ρ(Xs−)

dMρ
s .

Let Lρ
t be the solution of the following SDE:

Lρ
t = 1 +

∫ t

0
Lρ

s−dMs.

It follows from the Doleans-Dade formula that

Lρ
t = exp(Mt)

∏
0<s≤t

(1 + Ms −Ms−)e−(Ms−Ms−)

= exp(Mt)
∏

0<s≤t

ρ(Xs)
ρ(Xs−)

exp
(

1− ρ(Xs)
ρ(Xs−)

)

= exp

(
M−u

t +
∫ t

0

∫
Rd

2c(Xs, y)(u(Xs)− u(y) + 1− eu(Xs)−u(y))
|Xs − y|d+α

)m(dy)ds

)
, (4.2)
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where the last equality is shown on page 487 of [7]. Lρ
t is a nonnegative local martingale and

therefore a supermartingale multiplicative functional of X. Therefore by Theorem 62.19 of [10]
Lρ

t defines a family of probability measures {P̃x, x ∈ E} by dP̃x = Lρ
t dPx on Mt. We will use

X̃ = (Xt, P̃x) denote this new process. Put ν(dx) = ρ2(x)m(dx). It follows from [7] that X̃ is
a ν-symmetric Hunt process on Rd whose Dirichlet form (Ẽ , F̃) on L2(Rd, ν) is given by F̃ = F
and

Ẽ(u, u) =
∫
Rd

∫
Rd

ρ(x)ρ(y)c(x, y)(u(x)− u(y))2

|x− y|d+α
m(dx)m(dy), u ∈ F .

Thus X̃ is an α-stable-like process in the sense of [4]. Using the boundedness of u and the
assumption µ<u> ∈ Kd,α we can easily check that the function

V (x) =
∫
Rd

2c(x, y)(u(x)− u(y) + 1− eu(x)−u(y))
|x− y|d+α

m(dy)

belongs to Kd,α. It follows from (4.2) that for any nonnegative function f on Rd, any t > 0 and
any x ∈ Rd we have

Ex

(
eNu

t f(Xt)
)

= e−u(x)Ex

(
Lρ

t exp(−
∫ t

0
V (Xs)ds)(feu)(Xt)

)
= e−u(x)Ẽx

(
exp(−

∫ t

0
V (Xs)ds)(feu)(Xt)

)
.

Now applying Theorem 3.4 to the process X̃ and the potential V , we see that there is a function
r(t, x, y) defined on (0,∞)×Rd ×Rd such that

Ex

(
eNu

t f(Xt)
)

= e−u(x)

∫
Rd

r(t, x, y)(feu)(y)ν(dy)

= e−u(x)

∫
Rd

r(t, x, y)e−u(y)f(y)m(dy) (4.3)

for all (t, x) ∈ (0,∞) ×Rd and all nonnegative function f on Rd and that there exist positive
constants c1, c2, c3, c4 such that

c1e
−c2tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

≤ r(t, x, y) ≤ c3e
c4tt−

d
α

(
1 ∧ t1/α

|x− y|

)d+α

for all (t, x, y) ∈ (0,∞)×Rd ×Rd. It follows from (4.3) that Ru
t admits a density with respect

to m given by
ru(t, x, y) = e−u(x)r(t, x, y)e−u(y)

for all (t, x, y) ∈ (0,∞) × Rd × Rd. The last assertion of the theorem follows easily from the
boundedness of u. 2
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Remark 4.3 Of course, one can combine Theorems 3.4, 4.1 and 4.2 into one theorem about
the density of Feynman-Kac semigroup given by additive functionals involving all three compo-
nents: a continuous part with finite variation, a continuous part of zero energy and a purely
discontinuous part. We leave this to the reader.

Acknowledgment: I thank Panki Kim, Murali Rao and Zoran Vondracek for their helpful
comments on the first version of this paper.
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