
E l e c t r o n
i

c

J
o

u
r

n a l

o
f

P
r

o
b a b i l i t y

Vol. 14 (2009), Paper no. 1, pages 1–26.

Journal URL

http://www.math.washington.edu/~ejpecp/

Parabolic Harnack Inequality and Local Limit Theorem for

Percolation Clusters

M. T. Barlow∗

Department of Mathematics,

University of British Columbia,

Vancouver, BC V6T 1Z2, Canada.

B. M. Hambly†

Mathematical Institute,

University of Oxford,

24-29 St Giles,

Oxford OX1 3LB, UK.

Abstract

We consider the random walk on supercritical percolation clusters in Zd . Previous papers have

obtained Gaussian heat kernel bounds, and a.s. invariance principles for this process. We show

how this information leads to a parabolic Harnack inequality, a local limit theorem and estimates
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1 Introduction

We begin by recalling the definition of bond percolation on Zd : for background on percolation see

[18]. We work on the Euclidean lattice (Zd ,Ed), where d ≥ 2 and Ed =
�
{x , y} : |x − y | = 1

	
. Let

Ω = {0,1}Ed , p ∈ [0,1], and P = Pp be the probability measure on Ω which makes ω(e), e ∈ Ed

i.i.d. Bernoulli r.v., with P(ω(e) = 1) = p. Edges e with ω(e) = 1 are called open and the open

cluster C (x) containing x is the set of y such that x↔ y , that is x and y are connected by an open

path. It is well known that there exists pc ∈ (0,1) such that when p > pc there is a unique infinite

open cluster, which we denote C∞ = C∞(ω).
Let X = (Xn, n ∈ Z+, P x

ω, x ∈ C∞) be the simple random walk (SRW) on C∞. At each time step,

starting from a point x , the process X jumps along one of the open edges e containing x , with

each edge chosen with equal probability. If we write µx y(ω) = 1 if {x , y} is an open edge and 0

otherwise, and set µx =
∑

y µx y , then X has transition probabilities

PX (x , y) =
µx y

µx

. (1.1)

We define the transition density of X by

pωn (x , y) =
P x
ω(Xn = y)

µy

. (1.2)

This random walk on the cluster C∞ was called by De Gennes in [12] ‘the ant in the labyrinth’.

Subsequently slightly different walks have been considered: the walk above is called the ‘myopic

ant’, while there is also a version called the ‘blind ant’. See [19], or Section 5 below for a precise

definition.

There has recently been significant progress in the study of this process, and the closely related

continuous time random walk Y = (Yt , t ∈ [0,∞), P̃ x , x ∈ C∞), with generator

L f (x) =
∑

y

µx y

µx

( f (y)− f (x)).

We write

qωt (x , y) =
P̃ x
ω(Yt = y)

µy

(1.3)

for the transition densities of Y . Mathieu and Remy in [20] obtained a.s. upper bounds on

supy qωt (x , y), and these were extended in [2] to full Gaussian-type upper and lower bounds – see

[2, Theorem 1.1]. A quenched or a.s. invariance principle for X was then obtained in [25; 7; 21]:

an averaged, or annealed invariance principle had been proved many years previously in [14].

The main result in this paper is that as well as the invariance principle, one also has a local limit

theorem for pωn (x , y) and qωt (x , y). (See [17], XV.5 for the classical local limit theorem for lattice

r.v.) For D > 0 write

k
(D)
t (x) = (2πtD)−d/2e−|x |

2/2Dt

for the Gaussian heat kernel with diffusion constant D.

Theorem 1.1. Let X be either the ‘myopic’ or the ‘blind’ ant random walk on C∞. Let T > 0. Let

gωn : Rd → C∞(ω) be defined so that gωn (x) is a closest point in C∞(ω) to
p

nx. Then there exist
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constants a, D (depending only on d and p, and whether X is the blind or myopic ant walk) such that

P-a.s. on the event {0 ∈ C∞},

lim
n→∞

sup
x∈Rd

sup
t≥T

¯̄
¯nd/2�pω⌊nt⌋(0, gωn (x)) + pω⌊nt⌋+1

(0, gωn (x))
�
− 2a−1k

(D)
t (x)

¯̄
¯= 0. (1.4)

For the continuous time random walk Y we have

lim
n→∞

sup
x∈Rd

sup
t≥T

¯̄
¯nd/2qωnt(0, gωn (x))− a−1k

(D)
t (x)

¯̄
¯= 0, (1.5)

where the constants a, D are the same as for the myopic ant walk.

We prove this theorem by establishing a parabolic Harnack inequality (PHI) for solutions to the

heat equation onC∞. (See [2] for an elliptic Harnack inequality.) This PHI implies Hölder continuity

of pωn (x , ·), and this enables us to replace the weak convergence given by the CLT by pointwise

convergence. In this paper we will concentrate on the proof of (1.4) – the same arguments with

only minor changes give (1.5).

Some of the results mentioned above, for random walks on percolation clusters, have been

extended to the ‘random conductance model’, where µx y are taken as i.i.d.r.v. in [0,∞) – see

[9; 22; 25]. In the case where the random conductors are bounded away from zero and infinity, a

local limit theorem follows by our methods – see Theorem 5.7. If however the µx y have fat tails at 0,

then while a quenched invariance principle still holds, the transition density does not have enough

regularity for a local limit theorem – see Theorem 2.2 in [8].

As an application of Theorem 1.1 we have the following theorem on the Green’s function gω(x , y)

on C∞, defined (when d ≥ 3) by

gω(x , y) =

∫ ∞

0

qωt (x , y)d t. (1.6)

Theorem 1.2. Let d ≥ 3. (a) There exist constants δ, c1, . . . c4, depending only on d and p, and r.v.

Rx , x ∈ Zd satisfying

P(Rx ≥ n|x ∈ C∞)≤ c1e−c2nδ , (1.7)

such that
c3

|x − y |d−2
≤ gω(x , y)≤

c4

|x − y |d−2
if |x − y | ≥ Rx ∧ R y . (1.8)

(b) There exists a constant C = Γ( d

2
− 1)/(2πd/2aD) > 0 such that for any ǫ > 0 there exists M =

M(ǫ,ω) such that on {0 ∈ C∞},

(1− ǫ)C
|x |d−2

≤ gω(0, x)≤
(1+ ǫ)C

|x |d−2
for |x |> M(ω). (1.9)

(c) We have

lim
|x |→∞

|x |2−dE(gω(0, x)|0 ∈ C∞) = C . (1.10)

Remark. While (1.7) gives good control of the tail of the random variables Rx in (1.8), we do not

have any bounds on the tail of the r.v. M in (1.9). This is because the proof of (1.9) relies on the

invariance principles in [25; 7; 21], and these do not give a rate of convergence.
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In Section 2 we indicate how the heat kernel estimates obtained in [2] can be extended to

discrete time, and also to variants of the basic SRW X . In Section 3 we prove the PHI for C∞ using

the ‘balayage’ argument introduced in [3]. In the Appendix we give a self-contained proof of the

key equation in the simple fully discrete context of this section. In Section 4 we show that if the PHI

and CLT hold for a suitably regular subgraph G of Zd , then a local limit theorem holds. In Section

5 we verify these conditions for percolation, and prove Theorem 1.1. In Section 6, using the heat

kernel bounds for qωt and the local limit theorem, we obtain Theorem 1.2.

We write c, c′ for positive constants, which may change on each appearance, and ci for constants

which are fixed within each argument. We occasionally use notation such as c1.2.1 to refer to constant

c1 in Theorem 1.2.

2 Discrete and continuous time walks

Let Γ = (G, E) be an infinite, connected graph with uniformly bounded vertex degree. We write d

for the graph metric, and Bd(x , r) = {y : d(x , y) < r} for balls with respect to d. Given A⊂ G, we

write ∂ A for the external boundary of A (so y ∈ ∂ A if and only if y ∈ G − A and there exists x ∈ A

with x ∼ y .) We set A= A∪ ∂ A.

Let µx y be ‘bond conductivities’ on Γ. Thus µx y is defined for all (x , y) ∈ G × G. We assume

that µx y = µy x for all x , y ∈ G, and that µx y = 0 if {x , y} 6∈ E and x 6= y . We assume that the

conductivities on edges with distinct endpoints are bounded away from 0 and infinity, so that there

exists a constant CM such that

0< C−1
M ≤ µx y ≤ CM whenever x ∼ y, x 6= y. (2.1)

We also assume that

0≤ µx x ≤ CM , for x ∈ G; (2.2)

we allow the possibility that µx x > 0 so as to be able to handle ‘blind ants’ as in [19]. We define

µx = µ({x}) =
∑

y∈G µx y , and extend µ to a measure on G. The pair (Γ,µ) is often called a weighted

graph. We assume that there exist d ≥ 1 and CU such that

µ(Bd(x , r))≤ CU rd , r ≥ 1, x ∈ G. (2.3)

The standard discrete time SRW X on (Γ,µ) is the Markov chain X = (Xn, n ∈ Z+, P x , x ∈ G) with

transition probabilities PX (x , y) given by (1.1). Since we allow µx x > 0, X can jump from a vertex

x to itself. We define the discrete time heat kernel on (Γ,µ) by

pn(x , y) =
P x(Xn = y)

µx

. (2.4)

Let

L f (x) = µ−1
x

∑

y

µx y( f (y)− f (x)). (2.5)

One may also look at the continuous time SRW on (Γ,µ), which is the Markov process Y = (Yt , t ∈
[0,∞), P̃ x , x ∈ G), with generator L . We define the (continuous time) heat kernel on (Γ,µ) by

qt(x , y) =
P̃ x(Yt = y)

µx

. (2.6)
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The continuous time heat kernel is a smoother object that the discrete time one, and is often slightly

simpler to handle. Note that pn and qt satisfy

pn+1(x , y)− pn(x , y) =L pn(x , y),
∂ qt(x , y)

∂ t
=L qt(x , y).

We remark that Y can be constructed from X by making Y follow the same trajectory as X , but at

times given by independent mean 1 exponential r.v. More precisely, if Mt is a rate 1 Poisson process,

we set Yt = XMt
, t ≥ 0. Define also the quadratic form

E ( f , g) = 1

2

∑

x

∑

y

µx y( f (y)− f (x))(g(y)− g(x)). (2.7)

[2] studied the continuous time random walk Y and the heat kernel qt(x , y) on percolation

clusters, in the case when µx y = 1 whenever {x , y} is an open edge, and µx y = 0 otherwise. It was

remarked in [2] that the same arguments work for the discrete time heat kernel, but no details were

given. Since some of the applications of [2] do use the discrete time estimates, and as we shall also

make use of these in this paper, we give details of the changes needed to obtain these bounds.

In general terms, [2] uses two kinds of arguments to obtain the bounds on qt(x , y). One kind

(see for example Lemma 3.5 or Proposition 3.7) is probabilistic, and to adapt it to the discrete time

process X requires very little work. The second kind uses differential inequalities, and here one does

have to be more careful, since these usually have a more complicated form in discrete time.

We now recall some further definitions from [2].

Definition Let CV , CP , and CW ≥ 1 be fixed constants. We say Bd(x , r) is (CV , CP , CW )–good if:

CV rd ≤ µ(Bd(x , r)), (2.8)

and the weak Poincaré inequality
∑

y∈Bd (x ,r)

( f (y)− f Bd (x ,r))
2µy ≤ CP r2

∑

y,z∈Bd (x ,CW r),z∼y

| f (y)− f (z)|2µyz (2.9)

holds for every f : Bd(x , CW r)→ R. (Here f Bd (x ,r) is the value which minimises the left hand side

of (2.9)).

We say Bd(x ,R) is (CV , CP , CW )–very good if there exists NB = NBd (x ,R) ≤ R1/(d+2) such that

Bd(y, r) is good whenever Bd(y, r)⊆ Bd(x ,R), and NB ≤ r ≤ R. We can always assume that NB ≥ 1.

Usually the values of CV , CP , CW will be clear from the context and we will just use the terms ‘good’

and ‘very good’. (In fact the condition that NB ≤ R1/(d+2) is not used in this paper, since whenever

we use the condition ‘very good’ we will impose a stronger condition on NB).

From now on in the section we fix d ≥ 2, CM , CV , CP , and CW , and take (Γ,µ) = (G, E,µ) to

satisfy (2.3). If f (n, x) is a function on Z+ × G, we write

f̂ (n, x) = f (n+ 1, x) + f (n, x), (2.10)

and in particular, to deal with the problem of bipartite graphs, we consider

p̂n(x , y) = pn+1(x , y) + pn(x , y). (2.11)

The following Theorem summarizes the bounds on q and p that will be used in the proof of the

PHI and local limit theorem.
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Theorem 2.1. Assume that (2.1), (2.2) and (2.3) hold. Let x0 ∈ G. Suppose that R1 ≥ 16 and

Bd(x0,R1) is very good with N2d+4
Bd (x0,R1)

≤ R1/(2 logR1). Let x1 ∈ Bd(x0,R1/3). Let R log R = R1,

T = R2, B = Bd(x1,R), and qB
t (x , y), pB

n (x , y) be the heat kernels for the processes Y and X killed on

exiting from B. Then

qB
t (x , y)≥ c1T−d/2, if x , y ∈ Bd(x1, 3R/4), 1

4
T ≤ t ≤ T, (2.12)

qt(x , y)≤ c2T−d/2, if x , y ∈ Bd(x1,R), 1

4
T ≤ t ≤ T, (2.13)

qt(x , y)≤ c2T−d/2, if x ∈ Bd(x1,R/2), d(x , y)≥ R/8, 0≤ t ≤ T, (2.14)

and

pB
n+1(x , y)+pB

n (x , y)≥ c1T−d/2, if x , y ∈ Bd(x1, 3R/4), 1

4
T ≤ n≤ T, (2.15)

pn(x , y)≤ c2T−d/2, if x , y ∈ Bd(x1,R), 1

4
T ≤ n≤ T, (2.16)

pn(x , y)≤ c2T−d/2, if x ∈ Bd(x1,R/2), d(x , y)≥ R/8, 0≤ n≤ T. (2.17)

To prove this theorem we extend the bounds proved in [2] for the continuous time simple random

walk on (Γ,µ) to the slightly more general random walks X and Y defined above.

Theorem 2.2. (a) Assume that (2.1), (2.2) and (2.3) hold. Then the bounds in Proposition 3.1,

Proposition 3.7, Theorem 3.8, and Proposition 5.1– Lemma 5.8 of [2] all hold for p̂n(x , y) as well as

qt(x , y).

(b) In particular (see Theorem 5.7) let x ∈ G and suppose that there exists R0 = R0(x) such that

B(x ,R) is very good with N
3(d+2)

B(x ,R)
≤ R for each R ≥ R0. There exist constants ci such that if n satisfies

n≥ R
2/3
0 then

pn(x , y)≤ c1n−d/2e−c2d(x ,y)2/n, d(x , y)≤ n, (2.18)

and

pn(x , y) + pn+1(x , y)≥ c3n−d/2e−c4d(x ,y)2/n, d(x , y)3/2 ≤ n. (2.19)

(c) Similar bounds to those in (2.18), (2.19) hold for qt(x , y).

Remark. Note that we do not give in (b) Gaussian lower bounds in the range d(x , y) ≤ n <

d(x , y)3/2. However, as in [2, Theorem 5.7], Gaussian lower bounds on pn and qt will hold in

this range of values if a further condition ‘exceedingly good’ is imposed on B(x ,R) for all R ≥
R0. We do not give further details here for two reasons; first the ‘exceedingly good’ condition is

rather complicated (see [2, Definition 5.4]), and second the lower bounds in this range have few

applications.

Proof. We only indicate the places where changes in the arguments of [2] are needed.

First, let µ0
x y = 1 if {x , y} ∈ E, and 0 otherwise. Then (2.1) implies that if E 0 is the quadratic

form associated with (µ0
x y), then

c1E 0( f , f )≤ E ( f , f )≤ c2E 0( f , f ) (2.20)

for all f for which either expression is finite. This means that the weak Poincaré inequality for E 0

implies one (with a different constant CP) for E . Using this, the arguments in Section 3–5 of [2] go

through essentially unchanged to give the bounds for the continuous time heat kernel on (Γ,µ).
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More has to be said about the discrete time case. The argument in [2, Proposition 3.1] uses the

equality
∂

∂ t
q2t(x1, x1) =−2E (qt ,qt).

Instead, in discrete time, we set fn(x) = p̂n(x1, x) and use the easily verified relation

p̂2n+2(x1, x1)− p̂2n(x1, x1) =−E ( fn, fn). (2.21)

Given this, the argument of [2, Proposition 3.1] now goes through to give an upper bound on

p̂n(x , x), and hence on pn(x , x). A global upper bound, as in [2, Corollary 3.2], follows since,

taking k to be an integer close to n/2,

pn(x , y) =
∑

z

pk(x , z)pn−k(y, z)≤ (
∑

z

pk(x , z)2)1/2(
∑

z

pn−k(y, z)2)1/2

= p2k(x , x)1/2p2n−2k(y, y)1/2.

To obtain better bounds for x , y far apart, [2] used a method of Bass and Nash – see [5; 23].

This does not seem to transfer easily to discrete time. For a process Z , write τZ(x , r) = inf{t :

d(Zt , x)≥ r}. The key bound in continuous time is given in [2, Lemma 3.5], where it is proved that

if B = B(x0,R) is very good, then

P x(τY (x , r)≤ t)≤
1

2
+

c t

r2
, if x ∈ B(x0, 2R/3), 0≤ t ≤ cR2/ log R, (2.22)

provided cN d
B (log NB)

1/2 ≤ r ≤ R. (Here NB is the number given in the definition of ‘very good’.)

Recall that we can write Yt = XMt
, where M is a rate 1 Poisson process independent of X . So,

P x(τX (x , r)< t)P x(M2t > t) = P x(τX (x , r)< t, M2t > t)≤ P(τY (x , r)< 2t).

Since P(M2t > t)≥ 3/4 for t ≥ c, we obtain

P x(τX (x , r)< t)≤
2

3
+

c′ t

r2
. (2.23)

Using (2.23) the remainder of the arguments of Section 3 of [2] now follow through to give the

large deviation estimate Proposition 3.7 and the Gaussian upper bound Theorem 3.8.

The next use of differential inequalities in [2] is in Proposition 5.1, where a technique of Fabes

and Stroock [16] is used. Let B = Bd(x1,R) be a ball in G, and ϕ : G→ R, with ϕ(x) > 0 for x ∈ B

and ϕ = 0 on G − B. Set

V0 =
∑

x∈B

ϕ(x)µx .

Let gn(x) = p̂n(x1, x), and

Hn = V−1
0

∑

x∈B

log(gn(x))ϕ(x)µx . (2.24)
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We need to take n≥ R here, so that gn(x) > 0 for all x ∈ B. Using Jensen’s inequality, and recalling

that PX (x , y) = µx y/µx ,

Hn+1−Hn =
∑

x∈B

log(gn+1(x)/gn(x))ϕ(x)µx

=
∑

x∈G

ϕ(x)µx log
�∑

y∈G

PX (x , y)gn(y)/gn(x)
�

≥
∑

x∈G

ϕ(x)µx

∑

y∈G

PX (x , y) log(gn(y)/gn(x))

=
∑

x∈G

∑

y∈G

ϕ(x)µx y(log gn(y)− log gn(x))

= −1

2

∑

x∈G

∑

y∈G

(ϕ(y)−ϕ(x))(log gn(y)− log gn(x))µx y . (2.25)

Given (2.25), the arguments on p. 3071-3073 of [2] give the basic ‘near diagonal’ lower bound in

[2, Proposition 5.1], for p̂n(x , y). The remainder of the arguments in Section 5 of [2] can now be

carried through. �

Proof of Theorem 2.1. This follows from Theorem 2.2, using the fact that Theorem 3.8 and Lemma

5.8 of [2] hold. �

3 Parabolic Harnack Inequality

In this section we continue with the notation and hypotheses of Section 2. Our first main result,

Theorem 3.1, is a parabolic Harnack inequality. Then, in Proposition 3.2 we show that solutions to

the heat equation are Hölder continuous; this result then provides the key to the local limit theorem

proved in the next section.

Let

Q(x ,R, T ) = (0, T]× Bd(x ,R),

and

Q−(x ,R, T ) = [1

4
T, 1

2
T]× Bd(x , 1

2
R), Q+(x ,R, T ) = [3

4
T, T]× Bd(x , 1

2
R).

We use the notation t +Q(x ,R, T ) = (t, t + T )× Bd(x ,R). We say that a function u(n, x) is caloric

on Q if u is defined on Q = ([0, T]∩Z)× Bd(x ,R), and

u(n+ 1, x)− u(n, x) =L u(n, x) for 0≤ n≤ T − 1, x ∈ Bd(x ,R). (3.1)

It follows that if n ≥ 1 then Mk = u(n − k, Xk) is a P x -martingale for 0 ≤ k ≤ n ∧min{ j : X j /∈
Bd(x ,R)}. We say the parabolic Harnack inequality (PHI) holds with constant CH for Q =Q(x ,R, T )

if whenever u= u(n, x) is non-negative and caloric on Q, then

sup
(n,x)∈Q−

û(n, x)≤ CH inf
(n,x)∈Q+

û(n, x). (3.2)

The PHI in continuous time takes a similar form, except that caloric functions satisfy

∂ u

∂ t
=L u,
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and (3.2) is replaced by supQ−
u≤ CH infQ+ u.

We now show that the heat kernel bounds in Theorem 2.1 lead to a PHI.

Theorem 3.1. Let x0 ∈ G. Suppose that R1 ≥ 16 and Bd(x0,R1) is (CV , CP , CW )–very good with

N2d+4
Bd (x0,R)

≤ R1/(2 log R1). Let x1 ∈ Bd(x0,R1/3), and R log R = R1. Then there exists a constant

CH such that the PHI (in both discrete and continuous time settings) holds with constant CH for

Q(x1,R,R2).

Remark. The condition R1 = R log R here is not necessarily best possible.

Proof. We use the balayage argument introduced in [3] – see also [4] for the argument in a graph

setting. Let T = R2, and write:

B0 = Bd(x1,R/2), B1 = Bd(x1, 2R/3), B = Bd(x1,R),

and

Q =Q(x1,R, T ) = [0, T]× B, E = (0, T]× B1.

We begin with the discrete time case. Let u(n, x) be non-negative and caloric on Q. We consider

the space-time process Z on Z×G given by Zn = (In, Xn), where X is the SRW on Γ, In = I0−n, and

Z0 = (I0, X0) is the starting point of the space time process. Define the réduite uE by

uE(n, x) = E x
�
u(n− TE , XTE

); TE < τQ

�
, (3.3)

where TE is the hitting time of E by Z , and τQ the exit time by Z from Q. So uE = u on E, uE = 0 on

Qc, and since u(n− k, Xk) is a martingale on 0≤ k ≤ TE we have uE ≤ u on Q− E.

As the process Z has a dual, the balayage formula of Chapter VI of [10] holds and we can write

uE(n, x) =

∫

E

pB
n−r(x , y)νE(dr, d y), (n, x) ∈Q, (3.4)

for a suitable measure νE . Here pB
n (x , y) is the transition density of the process X killed on exiting

from B.

In this simple discrete setup we can write things more explicitly. Set

J f (x) =





∑
y∈B

µx y

µy
f (y), if x ∈ B1,

0, if x ∈ B− B1.
(3.5)

Then we have for x ∈ B,

uE(n, x) =
∑

y∈B

pB
n (x , y)u(0, y)µy +

∑

y∈B

n∑

r=2

pB
n−r(x , y)k(r, y)µy , (3.6)

where for r ≥ 2

k(r, y) = J(u(r − 1, ·)− uE(r − 1, ·))(y). (3.7)

See the appendix for a self-contained proof of (3.6) and (3.7).
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Since u= uE on E, if r ≥ 2 then (3.7) implies that k(r, y) = 0 unless y ∈ ∂ (B−B1). Adding (3.6)

for u(n, x) and u(n+ 1, x), and using the fact that k(n+ 1, x) = 0 for x ∈ B0, we obtain, for x ∈ B0,

ûE(n, x) =
∑

y∈B1

n∑

r=1

p̂B
n−r(x , y)k(r, y)µy . (3.8)

Now let (n1, y1) ∈ Q− and (n2, y2) ∈ Q+. Since (ni, yi) ∈ E for i = 1,2, we have uE(ni , yi) =

u(ni, yi), and so (3.8) holds. By Theorem 2.1 we have, writing A= ∂ (B− B1),

p̂B
n2−r(x , y)≥ c1T−d/2 for x , y ∈ B1, 0≤ r ≤ T/2,

p̂r(x , y)≤ c2T−d/2 for x , y ∈ B1, T/4≤ r ≤ T/2,

p̂n1−r(x , y)≤ c2T−d/2 for x ∈ B0, y ∈ A, 0< r ≤ n1.

Substituting these bounds in (3.8),

û(n2, y2) =
∑

y∈B1

p̂B
n2
(y2, y)u(0, y)µy +

∑

y∈A

n2∑

r=2

p̂B
n2−s(y2, y)k(r, y)µy

≥
∑

y∈B1

p̂B
n2
(y2, y)u(0, y)µy +

∑

y∈A

n1∑

r=2

p̂B
n2−s(y2, y)k(r, y)µy

≥
∑

y∈B1

c1T−d/2u(0, y)µy +
∑

y∈A

n1∑

r=2

c1T−d/2k(r, y)µy

≥
∑

y∈B1

c1c−1
2 p̂B

n1
(y1, y)u(0, y)µy +

∑

y∈A

n1∑

r=2

c1c−1
2 p̂B

n1−s(y1, y)k(r, y)µy

= c1c−1
2 û(n1, y1),

which proves the PHI.

The proof is similar in the continuous time case. The balayage formula takes the form

uE(t, x) =
∑

y∈B

qB
t (x , y)u(0, y)µy +

∑

y∈B1

∫ t

0

qB
t−s(x , y)k(s, y)µy ds, (3.9)

where k(s, y) is zero if y ∈ B− B1 and

k(s, y) = J(u(s, ·)− uE(s, ·))(y), y ∈ B1. (3.10)

(See [4, Proposition 3.3]). Using the bounds on qB
t in Theorem 2.1 then gives the PHI. �

Remark. In [2] an elliptic Harnack inequality (EHI) was proved for random walks on percolation

clusters – see Theorem 5.11. Since the PHI immediately implies the EHI, the argument above gives

an alternative, and simpler, proof of this result.

It is well known that the PHI implies Hölder continuity of caloric functions – see for example

Theorem 5.4.7 of [24]. But since in our context the PHI does not hold for all balls, we give the

details of the proof. In the next section we will just use this result when the caloric function u is

either qt(x , y) or p̂n(x , y).

10



Proposition 3.2. Let x0 ∈ G. Suppose that there exists s(x0)≥ 0 such that the PHI (with constant CH)

holds for Q(x0,R,R2) for R≥ s(x0). Let θ = log(2CH/(2CH − 1))/ log2, and

ρ(x0, x , y) = s(x0)∨ d(x0, x)∨ d(x0, y). (3.11)

Let r0 ≥ s(x0), t0 = r2
0 , and suppose that u = u(n, x) is caloric in Q = Q(x0, r0, r2

0 ). Let x1, x2 ∈
Bd(x0, 1

2
r0), and t0−ρ(x0, x1, x2)

2 ≤ n1, n2 ≤ t0− 1. Then

|û(n1, x1)− û(n2, x2)| ≤ c
�ρ(x0, x1, x2)

t
1/2
0

�θ
sup
Q+

|û|. (3.12)

Proof. We just give the discrete time argument – the continuous time one is almost identical. Set

rk = 2−kr0, and let

Q(k) = (t0− r2
k ) +Q(x0, rk, r2

k ).

Thus Q+(k) = Q(k + 1). Let k be such that rk ≥ s(x0). Let v̂ be û normalised in Q(k) so that

0 ≤ v̂ ≤ 1, and Osc (v̂,Q(k)) = 1. (Here Osc (u,A) = supQ u− infA u is the oscillation of u on A).

Replacing v̂ by 1− v̂ if necessary we can assume supQ−(k)
v̂ ≥ 1

2
. By the PHI,

1

2
≤ sup

Q−(k)
v̂ ≤ CH inf

Q+(k)
v̂,

and it follows that, if δ = (2CH)
−1, then

Osc (û,Q+(k))≤ (1−δ)Osc (û,Q(k)). (3.13)

Now choose m as large as possible so that rm ≥ ρ(x0, x , y). Then applying (3.13) in the chain of

boxes Q(1)⊃Q(2)⊃ . . .Q(m), we deduce that, since (x i , ni) ∈Q(m),

|û(n1, x1)− û(n2, x2)| ≤ Osc (û,Qm)≤ (1−δ)m−1 Osc (û,Q(1)). (3.14)

Since (1−δ)m ≤ c(r0/t
1/2
0 )θ , (3.12) follows from (3.14) . �

4 Local limit theorem

Now let G ⊂ Zd , and let d denote graph distance in G , regarded as a subgraph of Zd . We assume

G is infinite and connected, and 0 ∈ G . We define µx y as in Section 2 so that (2.1), (2.2) and (2.3)

hold, and write X = (Xn, n ∈ Z+, P x , x ∈ G ) for the associated simple random walk on (G ,µ). We

write | · |p for the Lp norm in Rd ; | · | is the usual (p = 2) Euclidean distance.

Recall that k
(D)
t (x) is the Gaussian heat kernel in Rd with diffusion constant D > 0 and let

X
(n)
t = n−1/2X⌊nt⌋. For x ∈ Rd , set

H(x , r) = x + [−r, r]d , Λ(x , r) = H(x , r)∩G . (4.1)

In general Λ(x , r) will not be connected. Let

Λn(x , r) = Λ(xn1/2, rn1/2).

Choose a function gn : Rd →G so that gn(x) is a closest point in G to n1/2 x , in the | · |∞ norm. (We

can define gn by using some fixed ordering of Zd to break ties.)

We now make the following assumption on the graph G and the SRW X on G . Let x ∈ Rd .
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Assumption 4.1. There exists a constant δ > 0, and positive constants D, CH , Ci , aG such that the

following hold.

(a) (CLT for X). For any y ∈ Rd , r > 0,

P0(X
(n)
t ∈ H(y, r))→

∫

H(y,r)

k
(D)
t (y

′)d y ′. (4.2)

(b) There is a global upper heat kernel bound of the form

pk(0, y)≤ C2k−d/2, for all y ∈ G , k ≥ C3.

(c) For each y ∈ G there exists s(y)<∞ such that the PHI (3.2) holds with constant CH for Q(y,R,R2)

for R≥ s(y).

(d) For any r > 0
µ(Λn(x , r))

(2n1/2r)d
→ aG as n→∞. (4.3)

(e) For each r > 0 there exists n0 such that, for n≥ n0,

|x ′− y ′|∞ ≤ d(x ′, y ′)≤ (C1|x ′− y ′|∞)∨ n1/2−δ, for all x ′, y ′ ∈ Λn(x , r).

(f) n−1/2s(gn(x))→ 0 as n→∞.

We remark that for any x all these hold for Zd : for the PHI see [13]. We also remark that these

assumptions are not independent; for example the PHI in (c) implies an upper bound as in (b). For

the region Q(y,R,R2) in (c) the space ball is in the graph metric on G .

We write, for t ∈ [0,∞),

p̂t(x , y) = p̂⌊t⌋(x , y) = p⌊t⌋(x , y) + p⌊t⌋+1(x , y).

Theorem 4.2. Let x ∈ Rd and t > 0. Suppose Assumption 4.1 holds. Then

lim
n→∞

nd/2 p̂nt(0, gn(x)) = 2a−1
G k

(D)
t (x). (4.4)

Proof. Write kt for k
(D)
t . Let θ be chosen as in Proposition 3.2. Let ǫ ∈ (0, 1

2
). Choose κ > 0 such

that (κθ + κ)< ǫ. Write Λn = Λn(x ,κ) = Λ(n1/2 x , n1/2κ). Set

J(n) = P0
�

n−1/2X⌊nt⌋ ∈ Λ(x ,κ)
�
+ P0
�

n−1/2X⌊nt⌋+1 ∈ Λ(x ,κ)
�
− 2

∫

Λ(x ,κ)

kt(y)d y. (4.5)

Then

J(n) =
∑

z∈Λn

�
p̂nt(0, z)− p̂nt(0, gn(x))

�
µz

+µ(Λn)p̂nt(0, gn(x))−µ(Λn)n
−d/2a−1

G 2kt(x) (4.6)

+ 2kt(x)
�
µ(Λn)n

−d/2a−1
G − 2dκd
�

(4.7)

+ 2

∫

H(x ,κ)

(kt(x)− kt(y))d y (4.8)

= J1(n) + J2(n) + J3(n) + J4(n).
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We now control the terms J(n), J1(n), J3(n) and J4(n). By Assumption 4.1 we can choose n1

with n−δ1 < 2C1κ such that, for n≥ n1,

|J(n)| ≤ κdǫ, (4.9)
¯̄
¯̄ µ(Λn)

aG (2n1/2κ)d
− 1

¯̄
¯̄≤ ǫ < 1

2
, (4.10)

sup

k≥1

2
nt,z∈G

p̂k(0, z)≤ c1(nt)−d/2, (4.11)

s(gn(x))n
−1/2 ≤ 2C1κ. (4.12)

We bound J1(n) by using the Hölder continuity of p̂, which comes from the PHI and Proposition

3.2. We begin by comparing Λn with balls in the d-metric. Let n ≥ n1. By (4.10) µ(Λn) > 0, so

gn(x) ∈ Λn. By Assumption 4.1(e) there exists n2 ≥ n1 such that, if n≥ n2 and y ∈ Λn then

d(y, gn(x))≤ (C1|y − gn(x)|∞)∨ n1/2−δ ≤ n1/2�(2C1κ)∨ n−δ
�
≤ 2C1κn1/2.

So, writing B = Bd(gn(x), 2C1κn1/2), Λn ⊂ B when n≥ n2. Thus we have, using (4.10),

|J1(n)| ≤ µ(Λn)max
z∈Λn

|p̂nt(0, z)− p̂nt(0, gn(x))|

≤ 2aG (2n1/2κ)d max
z∈B
|p̂nt(0, z)− p̂nt(0, gn(x))|. (4.13)

Using Assumption 4.1(c), Proposition 3.2 and then (4.11) and (4.12),

max
z∈B
|p̂nt(0, z)− p̂nt(0, gn(x))| ≤ c

� s(gn(x))∨ 2C1κn1/2

(nt)1/2

�θ
sup

k≥1

2
nt,z∈G

p̂k(0, z)

≤ c(nt)−d/2
� s(gn(x))n

−1/2 ∨ 2C1κ

t1/2

�θ

≤ c2 t−(d+θ)/2n−d/2κθ . (4.14)

Hence combining (4.13) and (4.14)

|J1(n)| ≤ c3 t−(d+θ)/2κd+θ . (4.15)

We now control the other terms. Since |∇kt(x)| ≤ c4 t−(d+1)/2,

|J4(n)| ≤ 2|Λ(x ,κ)|c4(t)(2κ) = κ
d+1c5(t). (4.16)

For J3(n), using (4.10) and (4.11), if n≥ n2 then

J3(n) = 2kt(x)
¯̄
µ(Λn)n

−d/2a−1
G − 2dκd
¯̄

= 2kt(x)2
dκd
¯̄
¯
µ(Λn)

aG (2n1/2κ)d
− 1

¯̄
¯≤ c6(t)κ

dǫ.

Now write epn = nd/2 p̂nt(0, gn(x)). Then for n≥ n2

|J2(n)|= µ(Λn)|p̂nt(0, gn(x))− n−d/2a−1
G 2kt(x)|

=
µ(Λn)

(2n1/2κ)d
(2κ)d |epn− 2a−1

G kt(x)| ≥ 1

2
aG (2κ)

d |epn− 2a−1
G kt(x)|.
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So,

1

2
aG (2κ)

d |epn− 2a−1
G kt(x)| ≤ |J(n)|+ |J1(n)|+ |J3(n)|+ |J4(n)|

≤ κdǫ+ c3 t−(d+θ)/2κd+θ + c6(t)κ
dǫ+ c5(t)κ

d+1

≤ c7(t)κ
d(ǫ+ κθ + κ)≤ 2c7(t)κ

dǫ.

Thus for n≥ n2,

|epn− 2a−1
G kt(x)| ≤ c8(t)ǫ, (4.17)

which completes the proof. �

Corollary 4.3. Let 0 < T1 < T2 < ∞. Suppose Assumption 4.1 holds, and in addition that for each

H(y, r) the CLT in Assumption 4.1(a) holds uniformly for t ∈ [T1, T2]. Then

lim
n→∞

sup
T1≤t≤T2

|nd/2 p̂nt(0, gn(x))− 2a−1
G k

(D)
t (x)|= 0. (4.18)

Proof. The argument is the same as for the Theorem; all we need do is to note that the constant

c8(t) in (4.17) can be chosen to be bounded on [T1, T2]. �

If we slightly strengthen our assumptions, then we can obtain a uniform result in x .

Assumption 4.4. (a) For any compact I ⊂ (0,∞), the CLT in Assumption 4.1(a) holds uniformly for

t ∈ I .

(b) There exist Ci such that

p̂k(0, x)≤ C2k−d/2 exp(−C4d(0, x)2/k), for k ≥ C3 and x ∈ G . (4.19)

(c) Assumption 4.1(c) holds.

(d) Let h(r) be the size of the biggest ‘hole’ in Λ(0, r). More precisely, h(r) is the suprema of the r ′ such

that Λ(y, r ′) = ; for some y ∈ H(0, r). Then limr→∞ h(r)/r = 0.

(e) There exist constants δ, C1, CH such that for each x ∈ Qd Assumption 4.1(d), (e) and (f) hold.

Note that in discrete time we have pk(0, x) = 0 if d(0, x) > k, so it is not necessary in (4.19) to

consider separately the case when d(0, x)≫ k.

Theorem 4.5. Let T1 > 0. Suppose Assumption 4.4 holds. Then

lim
n→∞

sup
x∈Rd

sup
t≥T1

|nd/2 p̂nt(0, gn(x))− 2a−1
G k

(D)
t (x)|= 0. (4.20)

Proof. As before we write kt = k
(D)
t . Set

w(n, t, x) = |nd/2 p̂nt(0, gn(x))− 2a−1
G kt(x)|.

Let ǫ ∈ (0, 1

2
). We begin by restricting to a compact set of x and t. Choose n1 so that n1T1 ≥ C3, and

T2 > 1+ T1 such that

2a−1
G kT2

(0) + C2T
−d/2
2 ≤ ǫ.
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If t ≥ T2 then using Assumption 4.1(b), for n≥ n1,

w(n, t, x)≤ nd/2 p̂nt(0, gn(x)) + 2a−1
G kt(x)≤ nd/2C2(nt)−d/2+ 2a−1

G kt(0)≤ ǫ.

So we can restrict to t ∈ [T1, T2].

Now choose R> 0 so that h(r)≤ 1

2
r for r ≥ R. Let |x | ≥ R and t ∈ [T1, T2]. Then

2a−1
G kt(x)≤ cT

−d/2
1 exp(−R2/2T2). (4.21)

We have |n1/2 x − gn(x)|∞ ≤ h(|x |n1/2)≤ 1

2
|x |n1/2, as |x |n1/2 > R for all n≥ 1, and hence

d(0, gn(x))≥ |gn(x)|∞ ≥ 1

2
|x |n1/2.

The Gaussian upper bound (4.19) yields

nd/2 p̂nt(0, gn(x))≤ c t−d/2 exp(−c′|x |2/t)≤ cT
−d/2
1 exp(−c′R2/T2). (4.22)

We can choose R large enough so the terms in (4.21) and (4.22) are smaller than ǫ. Thus w(n, t, x)<

ǫ whenever t > T2 or |x |> R, and n≥ n1. Thus it remains to show that there exists n2 such that for

n≥ n2,

sup
|x |≤R,T1≤t≤T2

w(n, t, x)< ǫ.

Now let κ be chosen as in the proof of Theorem 4.2, and also such that

c1T
−(d+θ)/2
1 κθ < ǫ, (4.23)

where c1 is the constant c3 in (4.15). Let η ∈ (0,κ)∩Q. Set Y = {y ∈ ηZd ∩ BR(0)}, where BR(0)

is the Euclidean ball centre 0 and radius R. By Theorem 4.2 and Corollary 4.3 for each y ∈ Y there

exists n′3(y) such that

sup
T1≤t≤T2

w(n, t, y)≤ ǫ for n≥ n′3(y). (4.24)

We can assume in addition that n′3(y) is greater than the n2 = n2(y) given by the proof of Theorem

4.2. Let n4 = maxy∈Y n′3(y). Now let x ∈ BR(0), and write y(x) for a closest point (in the | · |∞
norm) in Y to x: thus |x − y(x)|∞ ≤ η. Let n≥ n4. We have

|nd/2 p̂nt(0, gn(x))− 2a−1
G kt(x)| ≤ |nd/2 p̂nt(0, gn(x))− nd/2 p̂nt(0, gn(y(x)))| (4.25)

+ |nd/2 p̂nt(0, gn(y(x)))− 2a−1
G kt(y(x))| (4.26)

+ |2a−1
G kt(y(x))− 2a−1

G kt(x)|, (4.27)

and it remains to bound the three terms (4.25), (4.26), (4.27), which we denote L1, L2, L3 respec-

tively. Since η < κ and n ≥ n4 ≥ n3(y(x)), we have the same bound for L1 as in (4.14), and

obtain

L1 = |nd/2 p̂nt(0, gn(x))− nd/2 p̂nt(0, gn(y(x)))| ≤ c1 t−(d+θ)/2ηθ (4.28)

≤ c1T
−(d+θ)/2
1 ηθ < ǫ, (4.29)

by (4.23). As n≥ n4 and y(x) ∈ Y , by (4.24) L2 < ǫ. Finally,

L3 = |kt(x)− kt(y(x))| ≤ ηd1/2||∇kt ||∞ ≤ cηT
−(d+1)/2
1 ,
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and choosing η small enough this is less than ǫ. Thus we have w(n, t, x) < 3ǫ for any x ∈ BR(0),

t ∈ [T1, T2] and n≥ n4, completing the proof of the theorem. �

In continuous time we replace X by Y , pk(0, y) by qt(0, y), and modify Assumptions 4.1 and 4.4

accordingly. That is, in both Assumptions we replace the CLT for X in (a) by a CLT for Y , replace pn

in (b) by qt , and require the continuous time version of the PHI in (c). The same arguments then

give a local limit theorem as follows.

Theorem 4.6. Let T1 > 0. Suppose Assumption 4.4 (modified as above for the continuous time case)

holds. Then

lim
n→∞

sup
x∈Rd

sup
t≥T1

|nd/2qnt(0, gn(x))− a−1
G k

(D)
t (x)|= 0. (4.30)

5 Application to percolation clusters

We now let (Ω,P) be a probability space carrying a supercritical bond percolation process on Zd .

As in the Introduction we write C∞ = C∞(ω) for the infinite cluster. Let P0(·) = P(·|0 ∈ C∞). Let

x ∼ y . We set µx y(ω) = 1 if the edge {x , y} is open and µx y(ω) = 0 otherwise. In the physics

literature one finds two common choices of random walks on C∞, called the ‘myopic ant’ and ’blind

ant’ walks, which we denote X M and X B respectively. For the myopic walk we set

µM
x y = µx y , y 6= x ,

µM
x x = 0,

and for each ω ∈ Ω we then take X M = (X M
n , n ∈ Z+, P x

ω, x ∈ C∞(ω)) to be the random walk on the

graph (C∞(ω),µM (ω)). Thus X M jumps with equal probability from x along any of the open bonds

adjacent to x . The second choice (‘the blind ant’) is to take

µB
x y = µx y , y 6= x ,

µB
x x = 2d −µx ,

and take X B to be the random walk on the graph (C∞(ω),µB(ω)). This walk attempts to jump with

probability 1/2d in each direction, but the jump is suppressed if the bond is not open. By Theorem

2.2 the same transition density bounds hold for these two processes. Since these two processes are

time changes of each other, an invariance principle for one quickly leads to one for the other – see

for example [7, Lemma 6.4].

In what follows we take X to be either of the two walks given above. We write pωn (x , y) for its

transition density, and as before we set p̂ωn (x , y) = pωn (x , y)+ pωn+1(x , y). We begin by summarizing

the heat kernel bounds on pωn (x , y).

Theorem 5.1. There exists η= η(d)> 0 and constants ci = ci(d, p) and r.v. Vx , x ∈ Zd , such that

P(Vx(ω)≥ n)≤ c exp(−cnη), (5.1)

and if n≥ c|x − y | ∨ Vx then

c1n−d/2e−c2|x−y|2/n ≤ p̂ωn (x , y)≤ c3n−d/2e−c4|x−y|2/n. (5.2)

Further if n≥ c|x − y | then

c1n−d/2e−c2|x−y|2/n ≤ E(p̂ωn (x , y)|x , y ∈ C∞)≤ c3n−d/2e−c4|x−y|2/n. (5.3)
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Proof. This follows from Theorem 2.2(a), and the arguments in [2], Section 6. �

We now give the local limit theorem. As in Section 4 we write gωn (x) for a closest point in C∞ to

n1/2 x , set Λ(x , r) = Λ(x , r)(ω) = C∞(ω)∩ H(x , r), and write hω(r) for the largest hole in Λ(0, r).

Theorem 5.2. Let T1 > 0. Then there exist constants a, D such that P0-a.s.,

lim
n→∞

sup
x∈Rd

sup
t≥T1

|nd/2 p̂ωnt(0, gωn (x))− 2a−1k
(D)
t (x)|= 0. (5.4)

In view of Theorem 4.5 it is enough to prove that, P0-a.s., the cluster C∞(ω) and process X satisfy

Assumption 4.4. Note that since we apply Theorem 4.5 separately to each graph C∞(ω), it is not

necessary that the constants Ci in Assumption 4.4 should be uniform in ω – in fact, it is clear that

the constant C3 in (4.19) cannot be taken independent of ω.

Lemma 5.3. (a) There exist constants δ, C· such that Assumption 4.4 (a), (b), (c) all hold P0-a.s.

(b) Let x ∈ Rd . Then Assumption 4.1(e) holds P0-a.s.

Proof. (a) The CLT holds (uniformly) by the invariance principles proved in [25; 7; 21]. Assumption

4.4(b) holds by Theorem 1.1 of [2].

For x ∈ Zd , let Sx be the smallest integer n such that Bd(x ,R) is very good with N2d+4
Bd (x ,R)

< R for

all R ≥ n. (If x 6∈ C∞ we take Sx = 0.) Then by Theorem 2.18 and Lemma 2.19 of [2] there exists

γ= γd > 0 such that

P(Sx ≥ n)≤ c exp(−cnγ). (5.5)

In particular, we have that Sx < ∞ for all x ∈ C∞, P-a.s. By Theorem 3.1, the PHI holds for

Q(x ,R,R2) for all R≥ Sx , and Assumption 4.4(c) holds.

(b) Assumption 4.1(e) holds by results in [2] – see Proposition 2.17(d), Lemma 2.19 and Remark 2

following Lemma 2.19. �

In the results which follow, we have not made any effort to obtain the best constant γ in the

various bounds of the form exp(−nγ).

Lemma 5.4. With P-probability 1, limr→∞ hω(r)r
−1/2 = 0, and so Assumption 4.4(d) holds.

Proof. Let M0 be the random variable given in Lemma 2.19 of [2]. Let α = 1/4, and note that

β = 1− 2(1+ d)−1 > 1/3. Therefore

P0(M0 ≥ n)≤ c exp(−cnα/3),

and if M0 ≤ n then the event D(Q,α) defined in (2.21) of [2] holds for every cube of side n

containing 0. It follows from this (see (2.20) and the definition of R(Q) on p. 3040 in [2]) that

every cube of side greater than nα in [−n/2, n/2]d intersects C∞. Thus

P0(hω(n)≥ nα)≤ c exp(−cnα/3), (5.6)

and using Borel-Cantelli we deduce that limr→∞ hω(r)r
−1/2 = 0 P0-a.s. �

Lemma 5.5. Let x ∈ Rd . With P-probability 1, Assumption 4.1(f) holds.
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Proof. Let Fn = {gωn (x) ∈ Λn(x , 1)}, and Bn = {Sgωn (x)
> n1/3}. If F c

n occurs, then a cube side n

containing Λn(x , 1) has a hole greater than n1/2. So, by (5.6)

P(F c
m)≤ ce−cn1/3

.

Let Zn =maxz∈Λn(x ,1) Sx . Then

Bn ⊂ F c
n ∪ {Zn > n1/3},

so using (5.5)

P(Bn)≤ ce−c′n1/3

+ cnd/2e−c′nγ/3 ,

and by Borel-Cantelli Assumption 4.1(f) follows. �

It remains to prove Assumption 4.1(d). If instead we wanted to control |Λn|/(n1/2κ)d then we

could use results in [11; 15]. Since the arguments for µ(Λn) are quite similar, we only give a sketch

of the proof.

Lemma 5.6. Let x ∈ Rd . There exists a > 0 such that with P-probability 1,

µ(Λn(x , r))

(2n1/2r)d
→ a as n→∞, (5.7)

and so Assumption 4.1(d) holds.

Proof. For a cube Q ⊂ Zd write s(Q) for the length of the side of Q. Let ∂iQ = ∂ (Z
d −Q) be the

‘internal boundary’ of Q, and Q0 = Q− ∂iQ. Recall that µx is the number of open bonds adjacent to

x , and set

M(Q) = {x ∈Q0 : x↔ ∂iQ}, V (Q) = µ(M(Q)).

Note that if x ∈Q and x is connected by an open path to ∂iQ then x is connected to ∂iQ by an open

path inside Q. Thus the event x ∈ M(Q) depends only on the percolation process inside Q. So if

Q i are disjoint cubes, then the V (Q i) are independent random variables. Let Ck be a cube of side

length k and set

ak = Ek−d V (Ck).

By the ergodic theorem there exists a such that, P-a.s.,

lim
R→∞

V (H(0,R/2))

Rd
→ a, P-a.s. and in L1. (5.8)

In particular, a = lim ak. Since C∞ has positive density, it is clear that a > 0.

We have

µ(Q ∩C∞)≤ V (Q) + c1s(Q)d−1.

Let ǫ > 0. Choose k large enough so that c1/k ≤ ǫ, and ak ≤ a+ ǫ.

Now let Q be a cube of side nk, and let Q i , i = 1, . . . nd be a decomposition of Q into disjoint

sub-cubes each of side k. Then

(nk)−dµ(Q ∩C∞)− ak ≤ (nk)−d
∑

i

µ(Q i ∩C∞)− ak

≤ c1k−1 + n−d
∑

i

(k−d V (Q i)− ak).

18



As this is a sum of i.i.d. mean 0 random variables, it follows that there exists c2(k,ǫ)> 0 such that

P((nk)−dµ(Q ∩C∞)> a+ 3ǫ)≤ exp(−c2(k,ǫ)nd). (5.9)

The lower bound on µ(Q ∩C∞) requires a bit more work. We call a cube Q ‘m-good’ if the event

R(Q) given in [1] or p. 3040 of [2] holds, and

µ(C∞ ∩Q)≥ (a− ǫ)s(Q)d .

Let pk be the probability a cube of side k is m-good. Then by (2.24) in [1], and (5.8), lim pk = 1. As

in [1] we can now divide Zd into disjoint macroscopic cubes Tx of side k, and consider an associated

site percolation process where a cube is occupied if it is m-good. We write C ∗ for the infinite cluster

for this process. Let Q be a cube of side nk, and Tx be the nd disjoint sub-cubes of side k in Q. Then

µ(C∞ ∩Q)≥
∑

x

µ(C∞ ∩ Tx)≥ (a− ǫ)kd#{x : Tx ∈ C ∗, Tx ⊂Q}. (5.10)

By Theorem 1.1 of [15] we can choose k large enough so there exists a constant c3(k,ǫ) such that

P(n−d#{x : Tx ∈ C ∗, Tx ⊂Q}< 1− ǫ)≤ exp(−c3(k,ǫ)nd−1). (5.11)

It follows that

P
�
(nk)−dµ(C∞ ∩Q)< a− (1+ a)ǫ

�
≤ exp(−c3(k,ǫ)nd−1). (5.12)

Combining (5.9) and (5.12), and using Borel-Cantelli gives (5.7). �

Proof of Theorem 5.2. By Lemmas 5.3, 5.5 and 5.6 Assumption 4.1 holds for all x ∈ Qd , P-a.s.,

and so also P0-a.s. Therefore using Lemma 5.3 we have that Assumption 4.4 holds P0-a.s., so (5.4)

follows from Theorem 4.5. �

Proof of Theorem 1.1. The discrete time case is given by Theorem 5.2. For continuous time, since

Assumption 4.4 holds P0-a.s., (1.5) follows from Theorem 4.6. Since a is given by (4.3), and µ is

the same for Y and the myopic walk, the constant a in (1.5) is the same as for the myopic walk in

(1.4). If Zt is a rate 1 Poisson process then we can write Yt = XZt
, and it is easy to check that the

CLT for X implies one for Y with the same diffusion constant D. �

As a second application we consider the random conductance model in the case when the con-

ductances are bounded away from 0 and infinity.

Let (Ω,F ,P) be a probability space. Let K ≥ 1 and µe, e ∈ Ed be i.i.d.r.v. supported on

[K−1, K]. Let also ηx , x ∈ Zd be i.i.d. random variables on [0,1], F : Rd+1 → [K−1, K], and

µx x = F(ηx , (µx ·)). For each ω ∈ Ω let X = (Xn, n ∈ Z+, P x
ω, x ∈ Zd) be the SRW on (Zd ,µ) defined

in Section 2, and pωn (x , y) be its transition density.

Theorem 5.7. Let T1 > 0. Then there exist constants a, D such that P0-a.s.,

lim
n→∞

sup
x∈Rd

sup
t≥T1

|nd/2 p̂ωnt(0, gωn (x))− 2a−1k
(D)
t (x)|= 0. (5.13)
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Proof. As above, we just need to verify Assumption 4.4. The invariance principle in [25] implies

the uniform CLT, giving (a). Since µe are bounded away from 0 and infinity, the results of [13]

immediately give the PHI (with S(x) = 1 for all x) and heat kernel upper bound (4.19), so giving

Assumption 4.4(b) and (c), as well as Assumption 4.1(f). As G = Zd , Assumption 4.4(d) and

Assumption 4.1(e) hold.

It remains to verify Assumption 4.1(d), but this holds by an argument similar to that in Lemma

5.6. �

6 Green’s functions for percolation clusters

We continue with the notation and hypotheses of Section 5, but we take d ≥ 3 throughout this

section. The Green’s function can be defined by

gω(x , y) =

∫ ∞

0

qωt (x , y)d t. (6.1)

By Theorem 2.2(c) gω(x , y) is P-a.s. finite for all x , y ∈ C∞. We have that gω(x , ·) satisfies

L gω(x , y) =

(
0 if y 6= x ,

−1/µx if y = x .
(6.2)

Since any bounded harmonic function is constant (see [6] or [2, Theorem 4]), these equations have,

P-a.s., a unique solution such that gω(x , y) → 0 as |y | → ∞. It is easy to check that the Green’s

function for the myopic and blind ants satisfy the same equations, so the Green’s function for the

continuous time walk Y , and the myopic and blind ant discrete time walks are the same.

We write dω(x , y) for the graph distance on C∞. By Lemma 1.1 and Theorem 1 of [2] there exist

η > 0, constants ci and r.v. Tx such that

P(Tx ≥ n)≤ ce−c1nη , (6.3)

so that the following bounds on qωt (x , y) hold:

qt(x , y)≤ c2 exp(−c3dω(x , y)(1+ log
dω(x ,y)

t
)), 1≤ t ≤ dω(x , y), (6.4)

qt(x , y)≤ c4e−c5dω(x ,y)2/t , dω(x , y)≤ t, (6.5)

c6 t−d/2e−c7|x−y|2/t ≤ qωt (x , y)≤ c8 t−d/2e−c9|x−y|2/t , t ≥ Tx ∨ |y − x |. (6.6)

We can and will assume that Tx ≥ 1 for all x .

Lemma 6.1. Let x , y ∈ C∞, and δ ∈ (0,1). Then

∫ dω(x ,y)

0

qωt (x , y)d t ≤ c1e−c2|x−y|, (6.7)

∫ Tx

dω(x ,y)

qωt (x , y)d t ≤ c3Tx e−c4|x−y|2/Tx . (6.8)
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Proof. Using (6.4) and (6.5) we have

∫ dω(x ,y)

0

qωt (x , y)d t ≤
∫ dω(x ,y)

0

c exp(−cdω(x , y))d t ≤ ce−cdω(x ,y),

∫ Tx

dω(x ,y)

qωt (x , y)d t ≤
∫ Tx

dω(x ,y)

ce−cdω(x ,y)2/t d t ≤ cTx e−cdω(x ,y)2/Tx ,

and since dω(x , y)≥ c|x − y | this gives (6.7) and (6.8).

Proposition 6.2. Let x , y ∈ C∞, with x 6= y. Then there exist constants ci such that

c1

|x − y |d−2
≤ gω(x , y)≤

c2

|x − y |d−2
if |x − y |2 ≥ Tx(1+ c3 log |x − y |). (6.9)

Further, for x , y ∈ Zd ,

c4

1∨ |x − y |d−2
≤E
�

gω(x , y)|x , y ∈ C∞
�
≤

c5

1∨ |x − y |d−2
, (6.10)

E
�

gω(x , x)k|x ∈ C∞
�
≤ c6(k). (6.11)

Proof. Note first that, by (6.6)

∫ ∞

Tx

qωt (x , y)d t ≤
∫ ∞

0

c t−d/2e−c|x−y|2/t d t ≤ c′|x − y |2−d . (6.12)

Combining (6.7), (6.8) and (6.12) we obtain

gω(x , y)≤ c′e−c|x−y| + cTx e−c6|x−y|2/Tx + c|x − y |2−d . (6.13)

Taking c3 = d/c6 gives

Tx e−c6|x−y|2/Tx ≤ c|x − y |2e−d log |x−y| ≤ c|x − y |2−d ,

and this gives the upper bound in (6.9). For the lower bound in (6.9) we note that since Tx ≤ |x− y |2

gω(x , y)≥
∫ ∞

|x−y|2
qωt (x , y)d t ≥
∫ ∞

|x−y|2
c t−d/2e−c|x−y|2/t d t = c′|x − y |2−d . (6.14)

We now turn to (6.10). Choose k0 such that P(Tx ≤ k0)≥ 1

2
. Then

Ex gω(x , y)≥ Ex
�∫ ∞

Tx

qωt (x , y)d t; Tx ≤ k0

�
≥ 1

2

∫ ∞

k0

c t−d/2e−c|x−y|2/t d t. (6.15)

If |x − y |2 ≥ k0, then the final term in (6.15) is bounded below by c|x − y |2−d in the same way as

in (6.15), while when |x − y |2 ≤ k0 we have

Ex gω(x , y)≥ c

∫ ∞

k0

c t−d/2e−c|x−y|2/t d t ≥ ce−c|x−y|2/k0 k
1−d/2
0 ≥ c′, (6.16)
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which gives the lower bound in (6.10). For the averaged upper bound, note first that

gω(x , x) =

∫ ∞

0

qt(x , x)d t ≤ cTx +

∫ ∞

Tx

c t−d/2d t ≤ c′Tx . (6.17)

So for any k ≥ 1, by (6.3)

E(gω(x , x)k|x ∈ C∞)≤ c(k)E(T k
x |x ∈ C∞)≤ c′(k),

proving (6.11), and (taking k = 1) the upper bound in (6.10) when y = x .

Now let y 6= x and F = {|x − y |2 ≤ Tx(1+ c6.2.3|x − y |)}. Then writing Ex y(·) = E(·|x , y ∈ C∞),
and using (6.9), (6.17), the fact that gω(x , y)≤ gω(x , x) and (6.3),

Ex y gω(x , y) = Ex y(gω(x , y); F) +Ex y(gω(x , y); F c)

≤ c|x − y |2−d + (Ex y(gω(x , y)2))1/2Px y(F
c)1/2

≤ c|x − y |2−d + (Ex y(gω(x , x)2))1/2ce−c|x−y|η/3 ≤ c′|x − y |2−d ,

proving (6.10). �

To prove that |y |d−2 gω(0, y) has a limit as |y | →∞ we use Theorem 1.1. Write kt(x) = k
(D)
t (x),

where D is the constant in (1.5).

Lemma 6.3. Let ǫ > 0. Then for P-a.a. ω ∈ Ω0 there exists a > 0 and N = N(ǫ,ω) such that

|qωt (0, y)− a−1kt(y)| ≤ ǫt−d/2 for all t ≥ N , y ∈ C∞(ω). (6.18)

Proof. By Theorem 1.1. there exists N such that

sup
x∈Rd

sup
s≥1

¯̄
¯nd/2qωns(0, gωn (x))− a−1ks(x)

¯̄
¯≤ ǫ for n≥ N . (6.19)

Let n = N , s = t/n and x = n−1/2 y , so that gn(x) = y . Then noting that ks(x) = nd/2kt(y) (6.18)

follows. �

Let |z|= 1 and

C = a−1

∫ ∞

0

kt(z)d t = (Da)−1

∫ ∞

0

(2πs)−d/2e−1/2sds =
Γ( d

2
− 1)

2πd/2aD
. (6.20)

Proof of Theorem 1.2. (a) This was proved as Proposition 6.2.

(b) Let δ ∈ (0,1), to be chosen later. For y ∈ C∞ we set t1 = t1(y) = δ|y |2, and t2 = t2(y) =

|y |2/δ. Then

gω(0, y) =

∫ t1

0

qωt (0, y)d t +

∫ t2

t1

qωt (0, y)d t +

∫ ∞

t2

qωt (0, y)d t = I1+ I2+ I3. (6.21)
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As in Proposition 6.2 we have, using (6.7) and (6.8), that provided |y | ≥ T0,

I1 ≤ ce−c|y| + cT0e−c|y|2/T0 +

∫ δ|y|2

0

c t−d/2e−c|y|2/t d t (6.22)

≤ ce−c|y| + c|y |e−c|y| + c|y |2−d

∫ δ

0

s−d/2e−c1/sds (6.23)

≤ ce−c|y| + c|y |2−d e−c1/2δ. (6.24)

Also

I3 ≤
∫ ∞

|y|2/δ
c t−d/2e−c|y|2/t d t = cδd/2−1|y |2−d . (6.25)

So there exist M1 <∞ and δ > 0 so that

I1+ I3 ≤ 1

2
ǫC |y |2−d when |y | ≥ M1. (6.26)

Now let ǫ′ > 0, and let N = N(ǫ′) be given by Lemma 6.3. For I2 we have, provided t1 ≥ N

I2 ≤
∫ t2

t1

(ǫ′ t−d/2 + a−1kt(y))d t ≤ cǫ′ t1−d/2
1 +

∫ t2

t1

a−1kt(y)d t

≤ cǫ′δ1−d/2|y |2−d + C |y |2−d . (6.27)

Taking ǫ′ = 1

2
(C/c)ǫδd/2−1 gives the upper bound in (1.9). This bound holds provided |y | ≥ M1∨T0

and δ|y |2 ≥ N(ǫ′), Thus the upper bound in (1.9) holds provided

|y | ≥ T0 ∨M1 ∨ (δ−1N(ǫ′))1/2. (6.28)

For the lower bound, note that

C |y |2−d −
∫ t2

t1

a−1kt(y)d t ≤ c|y |2−d(e−c/δ + δd/2−1). (6.29)

So if (6.28) holds then

gω(0, y)≥ I2 ≥
∫ t2

t1

(−ǫ′ t−d/2 + kt(y))d t

≥ |y |2−d
�

C − cǫ′δ1−d/2 − e−c/δ −δd/2−1
�

,

proving the lower bound in (1.9).

(c) Let ǫ > 0, and M be as in (a), and U0 = T0(1+ c6.2.3 log |y |). Then by Proposition 6.2

E0 gω(0, y)≤ E0(gω(0, y); M ≤ |y |) +E0(gω(0, y); U0 ≤ |y |< M)

+E0(gω(0, y); |y |< U0)

≤
(1+ ǫ)C

|y |d−2
+

c6.2.2

|y |d−2
P0(M > |y |) + (E0 gω(0, y)2)1/2P0(U0 > |y |)1/2

≤
(1+ ǫ)C + c6.2.2P0(M > |y |)

|y |d−2
+ ce−c|y|η/3 (6.30)
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Also

E0 gω(0, y)≥ E0(gω(0, y); M ≤ |y |)≥
(1− ǫ)C
|y |d−2

P(M ≤ |y |). (6.31)

Combining (6.30) and (6.31) completes the proof of Theorem 1.2. �

A Appendix

In this appendix, we give a proof of the ‘balayage’ formula (3.6)-(3.7) used in the proof of the PHI

in Section 3.

Let Γ = (G, E) and µ be as in Section 2. Let B be a finite subset of G, and B1 ⊂ B. Write

B = B ∪ ∂ B. Let T ≥ 1, and

Q = (0, T]× B, Q = [0, T]× B, E = (0, T]× B1.

Recall that pB
n (x , y) is the heat kernel for the process X killed on exiting B. Set

PB f (x) =
∑

y∈B

pB
1 (x , y) f (y)µy , P f (x) =

∑

y∈G

p1(x , y) f (y)µy , (A.1)

for any function f on G

For a space-time function w(r, y) we will sometimes write wr(y) = w(r, y). Let

Hw(n, x) = w(n, x)− Pwn−1(x). (A.2)

Then w is caloric in a space-time region F ⊂ Z× G if and only if Hw(n, x) = 0 for (n, x) ∈ F . Let D
be the set of non-negative functions v(n, x) on Q such that v = 0 on Q−Q and v is caloric on Q− E.

In particular we have v(0, x) = 0 for v ∈ D.

Lemma A.1. Let w(r, y)≥ 0 on Q, with w = 0 on Q− E, and let v = v(n, x) be given by

v(n, x) =

(∑n
r=1 PB

n−r wr(x), if (n, x) ∈Q

0 if (n, x) 6∈Q.
(A.3)

Then v ∈ D, and

Hv(n, x) = w(n, x), (n, x) ∈Q. (A.4)

Proof. It is clear that v ≥ 0, and that v = 0 on Q−Q. If x ∈ B then it easy to check that PPB
m f (x) =

PB
m+1 f (x). Let (n, x) ∈Q, so 1≤ n≤ T and x ∈ B. Then

Hv(n, x) =

n∑

r=1

PB
n−r wr(x)− P
� n−1∑

r=1

PB
n−1−r wr

�
(x)

=

n∑

r=1

PB
n−r wr(x)−

n−1∑

r=1

PB
n−r wr(x) = wn(x). (A.5)

This proves (A.4), and as w(n, x) = 0 when x ∈ B − B1 we also deduce that v is caloric in Q − E,

proving that v ∈ D. �
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Lemma A.2. Let u, v ∈ D satisfy Hu(n, x) = Hv(n, x) for (n, x) ∈Q. Then u= v on Q.

Proof. We have u = v = 0 on Q−Q. We write uk = u(k, ·). First note that u0 = v0. If uk = vk and

x ∈ B then

u(k+ 1, x) = Hu(k+ 1, x) + Puk(x) = Hv(k+ 1, x) + Pvk(x),

so that uk+1 = vk+1. �

Let Z be the space-time process on Z × G given by Zn = (In, Xn), where X is the SRW on Γ,

In = I0 − n, and Z0 = (X0, I0) is the starting point of Z . We write Ê(n,x) for the law of Z started at

(n, x). Let u(n, x) be non-negative and caloric on Q. Then the réduite uE is defined by

uE(n, x) = Ê(n,x)
�
u(ITE

, XTE
); TE < τQ

�
, (A.6)

where

TE =min{k ≥ 0 : Zk ∈ E}, τQ =min{k ≥ 0 : Zk 6∈Q}. (A.7)

Lemma A.3. uE ∈ D.

Proof. If (n, x) ∈Q−Q then P̂(n,x)(τQ = 0) = 1, so uE(n, x) = 0. It is clear from the definition (A.6)

that uE is caloric on Q− E, and that uE ≥ 0. �

Proposition A.4. Let 1≤ n≤ T. Then

uE(n, x) =
∑

y∈B

n∑

r=1

pB
n−r(x , y)k(r, y)µy , (A.8)

where

k(r, y) =

(∑
z∈B pB

1 (y, z)(u(r − 1, z)− uE(r − 1, z))µz , if y ∈ B1,

0, if y ∈ B− B1.
(A.9)

Proof. Let kr(y) = k(r, y) be defined by (A.9) for r ≥ 1. Set

v(n, x) =

n∑

r=1

PB
n−r kr(x). (A.10)

By Lemma A.1 we have v ∈ D. To prove that v = uE it is sufficient, by Lemma A.2 to prove that

Hv(n, x) = HuE(nx , ) for (n, x) ∈Q.

We have Hv(n, x) = k(n, x) on Q by (A.4). If x ∈ B − B1 then k(n, x) = 0, while since uE is

caloric in Q− E we have HuE(n, x) = 0. If x ∈ B1 then as u= uE on E, and u is caloric on Q,

HuE(n, x) = uE(n, x)− PuE(n− 1, x)

= u(n, x)− PuE(n− 1, x) = Pu(n− 1, x)− PuE(n− 1, x)

= PB
1 (u− uE)(n− 1, x).

So we deduce that v = uE . �

25



If y ∈ B1 then the r = 1 term of (A.8) can be written

∑

y∈B

pB
n−1(x , y)µy(
∑

z∈B

pB
1 (y, z)µxu(0, z)) =

∑

z∈B

µxu(0, z)pB
n (x , z), (A.11)

so that (A.8) can be rewritten as

uE(n, x) =
∑

y∈B

pB
n (x , y)u(0, y)µy +

∑

y∈B

n∑

r=2

pB
n−r(x , y)k(r, y)µy , (A.12)

which is the form given in (3.6).

Acknowledgement We are grateful to R. Cerf for remarks concerning Lemma 5.6 and to J. Cerny

for asking about Green’s functions.
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