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Abstract

A graph homomorphism between two graphs is a map from the vertex set of one graph to
the vertex set of the other graph, that maps edges to edges. In this note we study the range
of a uniformly chosen homomorphism from a graph G to the infinite line Z. It is shown that
if the maximal degree of G is ‘sub-logarithmic’, then the range of such a homomorphism is
super-constant.
Furthermore, some examples are provided, suggesting that perhaps for graphs with super-
logarithmic degree, the range of a typical homomorphism is bounded. In particular, a sharp
transition is shown for a specific family of graphs Cn,k (which is the tensor product of
the n-cycle and a complete graph, with self-loops, of size k). That is, given any function
ψ(n) tending to infinity, the range of a typical homomorphism of Cn,k is super-constant for
k = 2 log(n) − ψ(n), and is 3 for k = 2 log(n) + ψ(n).
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1 Introduction

A graph homomorphism from a graph G to a graph H is a map from the vertex set of G
to the vertex set of H, that maps edges to edges. By a homomorphism of G we mean a graph
homomorphism fromG to the infinite line Z. Thus, a homomorphism of Gmaps adjacent vertices
to adjacent integers. We note that the uniform measure on the set of all homomorphisms of G,
that send some fixed vertex to 0, generalizes the concept of random walks on Z. Indeed, a random
homomorphism of the k-line is a random walk of length k on Z. So, random homomorphisms
of a graph G, are also referred to as G-indexed random walks. Tree-indexed random walks
were studied by Benjamini and Peres in (2). For results concerning random homomorphisms of
general graphs see (1; 8). (3) deals with connections between random homomorphisms and the
Gaussian random field. For other related 2-dimensional height models in physics see (7; 9).

A key quantity for our first result, Theorem 2.1, is V (r), the maximal size of a ball of radius r
in G. Theorem 2.1 states that for every r such that V (r) is at most 1

2 log(|G|), the range of a
random homomorphism is greater than r, with high probability. If d is the maximal degree in
G, then V (r) is at most (d + 1)r. Thus, Theorem 2.1 implies that for graphs of ‘small enough’
degree, the range of a homomorphism is typically ‘large’ (see Corollary 2.2). We stress that this
is only a sufficient condition for large range, and not a necessary one. For example, consider the
log(n)-regular tree of size n. Already for r = 1, a ball of radius r has at least log(n) vertices, so
the assertion of Theorem 2.1 is trivial. However, the range of a typical homomorphism of this
tree is of size at least Ω(log(n)/ log log(n)).

The next natural question is: How tight is this lower bound? That is, are there examples of
graphs of logarithmic degree that have bounded range (as the size of the graph grows to infinity)?
This can be decided via a result of Kahn (6). Kahn’s results states that there exists a constant
b ∈ N, such that the range of a random homomorphism of Qd, the discrete cube of dimension d,
is at most b, with probability tending to 1 as d tends to infinity (note that the size of Qd is 2d

and the degree of Qd is d). Galvin (4) later calculated b = 5.

Kahn’s result raises a new question: What happens to the range of a random homomorphism, if
the degree is logarithmic, but the diameter is large? (The discrete cube has logarithmic degree,
but also has logarithmic diameter.) To answer this question, we study the graph Cn,k in Section
3 (the graph Cn,k is the tensor product of the n-cycle and the complete graph of size k with
self-loops). We show a sharp transition in k, of the range of a random homomorphism of Cn,k.
Namely, for any monotone function ψ(n) tending to infinity, if k = 2 log(n) − ψ(n) the range is
2Ω(ψ(n)), with high probability, and if k = 2 log(n) + ψ(n) the range is 3, with high probability.
In particular, Cn,3 logn is a graph of almost linear diameter and logarithmic degree such that the
range of a random homomorphism of Cn,3 logn is 3, with high probability.

The rest of this paper is organized as follows: We first introduce some notation. Section 2
contains our lower bound. Section 3 proves the upper and lower bounds on the range of random
homomorphisms of the graph Cn,k. Section 4 lists some further possible research directions
concerning random homomorphisms of graphs.

Acknowledgement. We would like to thank Ori Gurel-Gurevich for useful discussions.
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1.1 Notation and Definitions

Logarithms are always of base 2. For an integer k ∈ N, denote [k] = {1, . . . , k}. For two integers
x, y ∈ Z, denote by [x, y] the set of integers at least x and at most y. For n ∈ N, denote by Zn

the additive group whose elements are [0, n − 1], and addition is modulo n.

1.1.1 Graphs

All graphs considered are simple and connected. Let G be a graph. For simplicity of notation,
we use G to denote the vertex set of the graph G. In particular, we write v ∈ G, if v is a vertex
of the graph G. For two vertices v, u ∈ G, we write v ∼ u ∈ G, if {u, v} is an edge in the graph
G. When the graph is clear, we use v ∼ u. The size of the graph G, denoted |G|, is the number
of vertices in G. The diameter of G is the maximal distance between any two vertices in G.
For a vertex v ∈ G and an integer r ∈ N, a ball of radius r centered at v is the subgraph of G
induced by the set of all vertices at distance at most r from v.

1.1.2 Homomorphisms

For two graphs G and H, a graph homomorphism from G to H is a mapping f : G → H that
preserves edges; that is, every two vertices v ∼ u ∈ G admit f(v) ∼ f(u) ∈ H. For two vertices
v0 ∈ G and x0 ∈ H, we denote by Homx0

v0 (G,H) the set of all homomorphisms f from G to H
such that f(v0) = x0. A homomorphism from G to H is also called a H-coloring of G.

We denote by Z both the set of integers, and the graph whose vertex set is the integers and edge

set is
{

{z, z + 1}
∣

∣ z ∈ Z
}

. We mostly consider Homv0(G,Z)
def
= Hom0

v0(G,Z). Note that

Homv0(G,Z) =
{

f : G→ Z
∣

∣ ∀ u ∼ v ∈ G |f(u) − f(v)| = 1 and f(v0) = 0
}

.

For a mapping f : G→ Z, define

f(G) =
{

f(v)
∣

∣ v ∈ G
}

and R(f) = |f(G)| .
We call both f(G) and R(f) the range of f . We use the notation ∈R to denote an element
chosen uniformly at random. E.g., f ∈R Homv0(G,Z) is a random homomorphism from G to
Z such that f(v0) = 0, chosen uniformly at random. (When G is finite and connected, the set
Homv0(G,Z) is finite, and f ∈R Homv0(G,Z) is well defined.) For example, consider the case
where G is the interval of length n; that is

V (G) = [0, n] and E(G) =
{

{i, i+ 1}
∣

∣ 0 ≤ i ≤ n− 1
}

.

Then, Hom0(G,Z) is the set of all paths in Z starting from 0, of length n. Therefore, f ∈R
Hom0(G,Z) is a n-step random walk on Z, starting at 0. Thus, for a general (connected and
finite) graph G, a random homomorphism f ∈R Homv0(G,Z), is also called a G-indexed random
walk.

For a graph G, we say that a homomorphism f from G to itself is an automorphism, if f is
invertible, and f−1 is a homomorphism as well. We say that a graph G is vertex transitive,
if all the vertices of G “look” the same; that is, for any two vertices v, u ∈ G, there exists an
automorphism f of G such that f(v) = u. We say that a graph G is edge transitive, if all the
edges of G “look” the same; that is, for any two edges {v1, v2} and {u1, u2} in G, there exists an
automorphism f of G such that {f(v1), f(v2)} = {u1, u2}.
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2 Lower Bounds for Graphs with Small Degree

In this section we show that for graphs of ‘small enough’ degree, the range of a homomorphism
is typically ‘large’. In fact, we prove something slightly stronger:

Theorem 2.1. Let {Gn} be a family of graphs such that limn→∞ |Gn| = ∞. For r ∈ N, define
Vn(r) to be the maximal size of a ball of radius r in Gn. Let vn ∈ Gn and let fn ∈R Homvn

(Gn,Z)
be a random homomorphism. Let r = r(n) ∈ N. Assume that there exists a constant c < 1 such
that every large enough n ∈ N admits Vn(r) ≤ c log |Gn|. Then

Pr [R(fn) ≤ r] = o(1).

We defer the proof of Theorem 2.1 to Section 2.4. First we discuss the tightness of Theorem 2.1.
In Section 3 we consider the family of graphs {Cn,k}, where n ∈ N is even, and k = k(n) ∈ N.
For n ∈ N, the size of Cn,k is kn, and the size of a ball of radius 3 in Cn,k is at most 7k; that is,
Vn(3) ≤ 7k. In Theorem 3.1 we show an upper bound on the range of a random homomorphism
of Cn,k, for logarithmic k. More specifically, we show that for k = 2 log n+ log log log n,

Pr [R(fn) > 3] = o(1), (1)

where fn ∈R Hom(0,1)(Cn,k,Z) is a random homomorphism. Thus, Theorem 2.1 is wrong if
instead of c < 1 we use c ≤ 14. Indeed, assume towards a contradiction that Theorem 2.1 holds
for every c ≤ 14. Since Vn(3) ≤ 7k < 14 log(kn), by the assumption we have

Pr [R(fn) ≤ 3] = o(1),

where fn ∈R Hom(0,1)(Cn,k,Z) is a random homomorphism. This is a contradiction to (1). We
note that since Cn,k is vertex transitive (and edge transitive), Theorem 2.1 is tight in the above
sense for vertex transitive graphs (and for edge transitive graphs).

2.1 Lower Bounds for Graphs with Small Degree

The following corollary of Theorem 2.1 shows that the range of a random homomorphism from
a graph of “small” degree to Z is “large”. For example, consider any family of graphs {Gn},
such that the degree of Gn is log log |Gn|. Then, the corollary states that the range of a random
homomorphism from Gn to Z is super-constant (as n tends to infinity), with high probability.

Corollary 2.2. Let {Gn} be a family of graphs such that limn→∞ |Gn| = ∞. Let n ∈ N, and let
d = d(n) be the maximal degree of Gn. Let vn ∈ Gn and let fn ∈R Homvn

(Gn,Z) be a random
homomorphism. Then

Pr

[

R(fn) ≤
log log |Gn| − 1

log(d+ 1)

]

= o(1).

Proof. For r ∈ N, denote by Vn(r) the maximal size of a ball of radius r in Gn. Since the maximal

degree of Gn is d = d(n), every r ∈ N admits Vn(r) ≤ (d + 1)r. Denote r = r(n) = log log|Gn|−1
log(d+1) .

Since (d+ 1)r = 1
2 log |Gn|, the corollary follows, by Theorem 2.1 (with c = 1/2). ⊓⊔

930



2.2 An Example - the Torus

A specific example for the use Theorem 2.1 is in the case of the torus. For an integer n ∈ N,
define the n × n torus, denoted Tn, as follows: The vertex set is Zn × Zn, and the edge set is
defined by the relations

∀ i, j ∈ Zn (i, j) ∼ (i+ 1, j) (i, j) ∼ (i, j + 1)

(where addition is modulo n). Note that Tn is both vertex transitive and edge transitive. The
following corollary shows that the range of a random homomorphism of the n × n torus is at
least Ω(log1/2 n), with high probability.

Corollary 2.3. Let n ∈ N, and let Tn be the n×n torus. Let fn ∈R Hom(0,0)(Tn,Z) be a random
homomorphism. Then

Pr[R(fn) > 1/2 log1/2 n] = 1 − o(1).

Proof. Note that the size of Tn is n2. For r ∈ N, denote by Vn(r) the maximal size of a ball of
radius r in Tn. The vertex set of the ball of radius r centered at (0, 0) is contained in

{

(i, j) ∈ Tn
∣

∣ i, j ∈ {−r, . . . , 0, . . . , r} (modulo n)
}

.

Thus, since Tn is vertex transitive, Vn(r) ≤ (2r + 1)2. So, since every large enough n admits
(2(1/2 log1/2 n) + 1)2 ≤ 2/3 log(n2), using Theorem 2.1 (with r = 1/2 log1/2 n and c = 2/3), we
have Pr[R(fn) > r] = 1 − o(1). ⊓⊔

2.3 A Ball of Radius r Has a Homomorphism with Range r + 1

Before we prove Theorem 2.1, we need the observation of Lemma 2.4.

For a graph G and a vertex v ∈ G, we denote by Br(v) the ball of radius r centered at v. We
say that Br(v) is of exact radius r, if there exists u ∈ Br(v) such that the distance between v
and u in G is at least r.

Lemma 2.4. Let G be a graph, let v be a vertex in G, and let r ∈ N. For an integer s ∈
[0, r], define Bs = Bs(v) to be the ball centered at v with radius s. Set B = Br(v) and Γ =
{

u ∈ B
∣

∣ u 6∈ Br−1

}

(the boundary of B). Let f be a homomorphism from B to Z. Assume that
B is of exact radius r. Then there exists a homomorphism g from B to Z such that g|Γ = f |Γ,
and R(g) ≥ r + 1.

Proof. Since a translation of a homomorphism is a homomorphism with the same range size,
assume without loss of generality that minu∈Γ f(u) = 0. We demonstrate an iterative process
such that at the ith step (for i = 0, . . . , r) we have a homomorphism gi that admits

1. gi|Γ = f |Γ.

2. The minimal value of gi on the ball Br−i is i.
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Thus, setting g = gr, we have: By property 1, we have g|Γ = f |Γ. By property 2, we have
maxu∈B g(u) ≥ r. Thus, since minu∈Γ g(u) = minu∈Γ f(u) = 0, we have R(g) ≥ |[0, r]| = r + 1
(which completes the proof of the lemma).

For the first step, we define g0 = |f |; that is, for u ∈ B, define g0(u) = |f(u)|. Note that g0 is a
homomorphism from B to Z. Since minu∈Γ f(u) = 0, it follows that g0|Γ = f |Γ. Furthermore,
every u ∈ B admits g0(u) ≥ 0. Thus, g0 has the two properties described above.

At the ith step (i > 0), define gi as follows

∀ u ∈ B gi(u) =







gi−1(u) u 6∈ Br−i
gi−1(u) u ∈ Br−i and gi−1(u) 6= i− 1
i+ 1 u ∈ Br−i and gi−1(u) = i− 1

Since Γ ∩ Br−i = ∅, by induction gi|Γ = gi−1|Γ = f |Γ. Let u be a vertex in Br−i such that
gi−1(u) = i − 1. Let w be a vertex in B such that w ∼ u. Then, w ∈ Br−(i−1). Hence, by
induction, gi−1(w) ≥ i − 1. So, since gi−1 is a homomorphism, gi−1(w) = i, which implies
gi(u) − gi(w) = i + 1 − gi−1(w) = 1. Thus, gi is indeed a homomorphism. Furthermore,
minu∈Br−i

gi(u) ≥ i. So gi satisfies the properties described above. ⊓⊔

2.4 Proof of Theorem 2.1

Fix n ∈ N. Set G = Gn, f = fn, v0 = vn, r = r(n), and S = Vn(r). We recall the following
definitions. For v ∈ G, we denote by Br(v) the ball of radius r centered at v. We say that Br(v)
is of exact radius r, if there exists u ∈ Br(v) such that the distance between v and u in G is at
least r. The following claim describes the size of a collection of pairwise disjoint balls of exact
radius r in G.

Claim 2.5. Let V ⊆ G be a set of vertices of size |V | = k. Then, there exists a set U ⊆ V of
size |U | ≥ ⌊k/S2⌋ such that

1. For all u ∈ U , the ball Br(u) is of exact radius r.

2. For all u 6= u′ ∈ U , we have Br(u) ∩Br(u′) = ∅.

Proof. We prove the claim by induction on the size of V . Induction base: If |V | < S2, then
there is nothing to prove. Induction step: Assume |V | ≥ S2. If r = 0, then set U = V , and
the claim follows. If r > 0, then S > 1, which implies |V | > S. Then, since S is the size of the
maximal ball of radius r in G, there exist v, v′ ∈ V such that the distance between v and v′ in
G is at least r. Thus, Br(v) is of exact radius r.

Denote
B =

⋃

w∈Br(v)

Br(w).

Then, |B| ≤ S2. Denote V ′ = V \ B. Then, |V ′| ≥ k − S2 and |V ′| < |V |. By induction, there
exists a set U ′ ⊆ V ′ of size |U ′| ≥ ⌊|V ′| /S2⌋ ≥ ⌊k/S2⌋ − 1 such that

1. For all u ∈ U ′, the ball Br(u) is of exact radius r.

2. For all u 6= u′ ∈ U ′, we have Br(u) ∩Br(u′) = ∅.
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Set U = U ′ ∪ {v}. So, U ⊆ V of size |U | ≥ ⌊k/S2⌋. To complete the proof it remains to show
that for all u ∈ U ′, we have Br(v) ∩ Br(u) = ∅. Indeed, let u ∈ U ′. Then, since u 6∈ B, the
distance between u and Br(v) in G is more than r. Thus, Br(v) ∩Br(u) = ∅. ⊓⊔

Returning to the proof of Theorem 2.1: By Claim 2.5, let k = ⌊|G|/S2⌋ − 1, and let B1, . . . , Bk
be a collection of pairwise disjoint balls of exact radius r in G such that for every i ∈ [k], we
have v0 6∈ Bi. Note that every i ∈ [k] admits |Bi| ≤ S.

Let i ∈ [k], and let g ∈ Homv0(G \ Bi,Z) be a homomorphism that can be extended to a
homomorphism in Homv0(G,Z). Denote by Ai the event {|f(Bi)| ≤ r} and by Ei,g the event
{

f
∣

∣

G\Bi

= g
}

. Since g can be extended to a homomorphism in Homv0(G,Z), we have Ei,g 6= ∅.
Since there are at most 2|Bi| ≤ 2S homomorphisms f ′ ∈ Homv0(G,Z) such that f ′ agrees with
g on G \Bi, we have

|Ei,g| ≤ 2S .

Since Ei,g 6= ∅, since Bi is of exact radius r, and since v0 6∈ Bi, using Lemma 2.4, there exists a
homomorphism h ∈ Homv0(G,Z) such that |h(Bi)| ≥ r+ 1 and h agrees with g on G \Bi. That
is, h 6∈ Ai and h ∈ Ei,g, which implies |Ai ∩ Ei,g| ≤ |Ei,g| − 1. Hence,

Pr
[

Ai

∣

∣

∣
Ei,g

]

=
|Ai ∩ Ei,g|

|Ei,g|
≤ |Ei,g| − 1

|Ei,g|
≤ 1 − 2−S . (2)

Note that for j 6= i, since Bj ⊆ G \Bi, the event Ei,g determines Aj; that is, Ei,g ∩Aj is either
Ei,g or empty. Since (2) holds for any g such that Ei,g 6= ∅,

Pr
[

Ai
∣

∣ Aj : 1 ≤ j < i
]

=
∑

g

Pr
[

Ai

∣

∣

∣
Aj : 1 ≤ j < i, Ei,g

]

Pr [Ei,g|Aj : 1 ≤ j < i]

=
∑

g

Pr [Ai|Ei,g] Pr [Ei,g|Aj : 1 ≤ j < i]

≤ 1 − 2−S , (3)

where the sum is over all homomorphisms g ∈ Homv0(G \ Bi,Z) such that Ei,g ∩
{Aj : 1 ≤ j < i} 6= ∅ (which implies Ei,g ∩ {Aj : 1 ≤ j < i} = Ei,g). Since (3) holds for every
i ∈ [k], and since S ≤ c log |G| (where c < 1),

Pr [R(f) ≤ r] ≤ Pr[∀ i ∈ [k] Ai]

=

k
∏

i=1

Pr
[

Ai
∣

∣ Aj : 1 ≤ j < i
]

≤
(

1 − 2−S
)k ≤ exp

(

− k

2S

)

≤ e2 exp

(

− |G|1−c
c2 log2 |G|

)

= o(1),

where the last equality holds, since limn→∞ |Gn| = ∞. ⊓⊔
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3 The Cycle - Cn,k

In this section we study the range of a random homomorphism of the graph Cn,k, where n, k ∈ N,
and n is even. We consider the graph Cn,k mainly for two reasons: First, for logarithmic k, the
graph Cn,k has almost linear diameter (the diameter of Cn,k is Ω(n), while the size of Cn,k is
O(n log n)), and still the range of a random homomorphism of Cn,k is constant (the range is 3).
Second, Cn,k is both vertex transitive and edge transitive.

The graph Cn,k is a cycle of n layers. Each layer has k vertices, and is connected to both its
adjacent layers by a complete bi-partite graph. Thus, the degree of Cn,k is 2k. Formally, the
vertex set of Cn,k is Zn × [k], and the edge set of Cn,k is defined by the relations

∀ i ∈ Zn s, t ∈ [k] (i, s) ∼ (i+ 1, t),

where addition is modulo n. (Cn,k is also the tensor product of the n-cycle and the complete
graph on k vertices with self-loops.) Denote by Hn,k = Hom(0,1)(Cn,k,Z), the set of homomor-
phisms from Cn,k to Z that map (0, 1) to 0. Since n is even, Cn,k is bi-partite, which implies
that Hn,k 6= ∅.
We show a threshold phenomena (with respect to k) concerning the range of a random homo-
morphism from Cn,k to Z. More precisely, for k(n) = 2 log n+ ω(1), the range of a random ho-
momorphism is at most 3, with high probability, and on the other hand for k(n) = 2 log n−ω(1),
the range of a random homomorphism is super-constant, with high probability. The following
two theorems make the above statements precise.

Theorem 3.1. Let n ∈ N be even, and let k = k(n) = 2 log n+ψ(n), where ψ : N → R
+ is such

that limn→∞ ψ(n) = ∞. Let fn ∈R Hn,k be a random homomorphism. Then

Pr[R(fn) ≤ 3] = 1 − o(1).

Theorem 3.2. Let n ∈ N be even, and let k = k(n) = 2 log n − ψ(n), where ψ : N → R
+ is

monotone and limn→∞ ψ(n) = ∞. Let fn ∈R Hn,k be a random homomorphism. Then

Pr

[

R(fn) ≥
2ψ(n−2)/4

ψ(n)

]

= 1 − o(1).

For the rest of this section we prove the above theorems. The proof of Theorem 3.1 is deferred
to Section 3.4, and the proof of Theorem 3.2 is deferred to Section 3.6. We note that for k = 1,
we have that Cn,k is the n-cycle. Thus, fn ∈R Hn,1 is a random walk bridge of length n (a
random walk bridge is a random walk conditioned on returning to 0). In this case, Theorem 3.2
gives the bound

Pr

[

R(fn) ≥ Ω

( √
n

log n

)]

= 1 − o(1).

This is consistent with the range of a random walk bridge (see also Remark 3.17).

3.1 Definitions

Let n, k ∈ N, where n is even. For i ∈ Zn, the i-layer in Cn,k is the set of vertices {i} × [k].
Recall that Hn,k = Hom(0,1)(Cn,k,Z) is the set of homomorphisms from Cn,k to Z that map

934



(0, 1) to 0. Denote by H0
n,k the set of homomorphisms from Cn,k to Z that map the 0-layer to

0; that is,
H0
n,k =

{

f ∈ Hn,k

∣

∣ f({0} × [k]) = {0}
}

.

When n and k are clear we use H0 = H0
n,k.

For f ∈ Hn,k and i ∈ Zn, we say that the i-layer is constant in f , if f gets the same value on
the entire i-layer; that is, |f({i} × [k])| = 1. We say that the i-layer is non-constant in f , if f
gets different values on the i-layer; that is, |f({i} × [k])| > 1. Define NC(f) to be the set of
non-constant layers in f ; that is,

NC(f) =
{

i ∈ Zn

∣

∣ |f({i} × [k])| > 1
}

.

For ℓ ∈ [0, n], define H0(ℓ) = H0
n,k(ℓ) to be the set of homomorphisms in H0 that have exactly

ℓ non-constant layers.

Loosely speaking, a homomorphism of Cn,k corresponds to a path on Z that starts at 0 and ends
at 0. This motivates the following definition. For an even integer m ∈ N, denote by P(m) the
set of paths of length m on Z that start at 0 and end at 0; that is,

P(m) =
{

(S0, S1, . . . , Sm) ∈ Z
m
∣

∣ ∀ i ∈ [m] |Si − Si−1| = 1 and S0 = Sm = 0
}

.

Note that |P(m)| =
( m
m/2

)

.

Consider the values of a homomorphism on the 1-layer. Since all vertices in the 1-layer are
connected to a vertex that is mapped to 0, the value of a homomorphism on the 1-layer corre-
sponds to a vector in {1,−1}k. In fact, it turns out that the value of a homomorphism on a
non-constant layer corresponds to a {1,−1}k non-constant vector. Thus, the following definition
will be useful. Define

V = Vk = {1,−1}k \ {(1, 1, . . . , 1), (−1,−1, . . . ,−1)} .

3.2 The Constant Layers

In this section we show some properties of the constant layers. First, we show that homomor-
phisms in Hn,k do not have two adjacent non-constant layers. Second, we show that if the 0-layer
is non-constant in a homomorphism f ∈ Hn,k, then we can think of f as a homomorphism in
H0
n−2,k. Third, we show that, conditioned on a specific set of ℓ non-constant layers, a random

homomorphism in H0
n,k corresponds to a random walk bridge of length n − 2ℓ (i.e., a random

walk of length n− 2ℓ on Z that starts at 0 and ends at 0).

3.2.1 No Two Adjacent Non-constant Layers

Claim 3.3. Let f ∈ Hn,k be a homomorphism. Assume that i ∈ Zn is such that the i-layer is
non-constant in f . Then there exists z ∈ Z such that

f({i+ 1} × [k]) = f({i− 1} × [k]) = {z} .

In particular, both the (i+ 1)-layer and the (i− 1)-layer are constant in f .
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Proof. We prove the claim for the (i+ 1)-layer. The proof for the (i− 1)-layer is similar. Since
the i-layer is non-constant in f , there exist s, t ∈ [k] such that f(i, s) < f(i, t). Recall that
every q ∈ [k] admits (i + 1, q) ∼ (i, s) and (i + 1, q) ∼ (i, t). Thus, every q ∈ [k] admits
f(i+ 1, q) = f(i, s) + 1 = f(i, t) − 1. Setting z = f(i, s) + 1, the claim follows. ⊓⊔

3.2.2 If the 0-layer is non-constant in f , we can think of f as a homomorphism of

a smaller graph

Let f ∈ Hn,k \H0
n,k be a homomorphism. That is, the 0-layer is non-constant in f . Define f↓ as

follows:
∀ i ∈ Zn−2 s ∈ [k] f↓(i, s) = f(i+ 1, s) − f(1, 1).

Claim 3.4. Let f ∈ Hn,k \ H0
n,k be a homomorphism. Then f↓ is a homomorphism in H0

n−2,k.

Proof. Since the 0-layer is non-constant in f , by Claim 3.3, there exists z ∈ {1,−1} such that

f({1} × [k]) = f({n− 1} × [k]) = {z} . (4)

First, we show that f↓ is a homomorphism of Cn−2,k. Indeed, for all i ∈ [0, n − 4] and for all
s, t ∈ [k], we have f↓(i+ 1, s) − f↓(i, t) = f(i+ 2, s) − f(i+ 1, t) ∈ {1,−1}. Furthermore, for all
s, t ∈ [k], by (4), we have

f↓(0, s) − f↓(n− 3, t) = f(1, s) − f(n− 2, t) = f(n− 1, 1) − f(n− 2, t) ∈ {1,−1} .

Second, for all s ∈ [k], we have f↓(0, s) = f(1, s) − f(1, 1) = z − z = 0. ⊓⊔

In fact, the following claim holds.

Claim 3.5. Let f ∈R Hn,k \H0
n,k be a random homomorphism. Then f↓ is uniformly distributed

in H0
n−2,k.

Proof. We will show that the mapping

from Hn,k \ H0
n,k to H0

n−2,k × {1,−1} ×
(

{0, 2}k−1 \ {(0, . . . , 0)}
)

defined by

f 7→ (f↓, f(1, 1), f(1, 1) · f(0, 2), f(1, 1) · f(0, 3), . . . , f(1, 1) · f(0, k))

is a bijection, where f↓ ∈ H0
n−2,k is the homomorphism defined above, f(1, 1) ∈ {1,−1}, and

(f(1, 1) · f(0, 2), f(1, 1) · f(0, 3), . . . , f(1, 1) · f(0, k)) ∈ {0, 2}k−1 is a non-zero vector.

First, the mapping is injective. Indeed, let f1 6= f2 be two homomorphisms in Hn,k \ H0
n,k.

If f1(1, 1) 6= f2(1, 1), then the images of f1 and f2 are different (in the second coordinate).
Otherwise, assume that

f1(1, 1) = f2(1, 1). (5)

There exist i ∈ Zn and s ∈ [k] such that f1(i, s) 6= f2(i, s). If either i = 1 or i = n− 1, since the
0-layer is non-constant in both f1 and f2, using Claim 3.3, then f1(1, 1) = f1(i, s) 6= f2(i, s) =
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f2(1, 1) (contradicting (5)). Otherwise, if i = 0, then f1(1, 1) · f1(0, s) 6= f2(1, 1) · f2(0, s), for
s > 1 (since f1(0, 1) = f2(0, 1) = 0), implying that the images of f1 and f2 are different. Finally,
if i ∈ [2, n − 2], we have f1

↓ (i − 1, s) = f1(i, s) − f1(1, 1) 6= f2(i, s) − f2(1, 1) = f2
↓ (i − 1, s), so

the images of f1 and f2 are different (in the first coordinate).

Second, the mapping is surjective. Indeed, given a homomorphism g ∈ H0
n−2,k, an integer

z ∈ {1,−1}, and a non-zero vector (v2, . . . , vk) ∈ {0, 2}k−1, define

∀ i ∈ Zn s ∈ [k] f(i, s) =















0 i = 0, s = 1
z · vs i = 0, s 6= 1
z i = n− 1

g(i− 1, s) + z i ∈ [1, n − 2].

Thus, for every i ∈ Zn and s, t ∈ [k], (recall that g({0} × [k]) = {0}),

f(i+ 1, s) − f(i, t) =































g(0, s) + z − 0 = z ∈ {1,−1} i = 0, t = 1
g(0, s) + z − z · vt ∈ {1,−1} i = 0, t 6= 1

0 − z ∈ {1,−1} i = n− 1, s = 1
z · vs − z ∈ {1,−1} i = n− 1, s 6= 1

z − (g(n − 3, t) + z) ∈ {1,−1} i = n− 2
g(i, s) + z − (g(i − 1, t) + z) ∈ {1,−1} i ∈ [1, n − 3],

which implies f ∈ Hn,k. Furthermore, since (v2, . . . , vk) is a non-zero vector, it follows that
f({0} × [k]) = {0, 2z}, which implies f 6∈ H0

n,k. Finally, we will show that f 7→ (g, z, v2, . . . , vk).
Indeed, for all i ∈ Zn−2 and s ∈ [k], we have f↓(i, s) = f(i+1, s)−f(1, 1) = g(i, s)+z−(g(0, 1)+
z) = g(i, s). Also f(1, 1) = g(0, 1) + z = z, and for all s ∈ [2, k], we have f(1, 1) · f(0, s) =
z · z · vs = vs.

The size of the range of the above defined mapping is
∣

∣

∣
H0
n−2,k

∣

∣

∣
· 2 · (2k−1 − 1). Therefore, for

every g ∈ H0
n−2,k,

Pr [f↓ = g] =
2 · (2k−1 − 1)
∣

∣

∣
Hn,k \ H0

n,k

∣

∣

∣

=
1

∣

∣

∣
H0
n−2,k

∣

∣

∣

.

⊓⊔

3.2.3 Conditioned on the Set of Non-constant Layers, a Random Homomorphism

is a Random Walk Bridge

Let
I = {i1 < · · · < iℓ} ⊆ [n− 1]

be a set of size ℓ such that for every i ∈ [n− 2], either i 6∈ I or i+ 1 6∈ I (or both). We think of
I as a set of non-constant layers (recall Claim 3.3).

Denote by H(I, n) the set of homomorphisms f in H0
n,k such that I is the set of non-constant

layers in f (we think of k as fixed). Recall that P(n − 2ℓ) is the set of paths on Z of length
n− 2ℓ that start at 0 and end at 0, and recall that

V = {1,−1}k \ {(1, 1, . . . , 1), (−1,−1, . . . ,−1)} .
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For a homomorphism f ∈ Hn,k, define the range of the constant layers in f to be

RC(f) =
{

f(i, 1)
∣

∣ i ∈ Zn is such that the i-layer is constant in f
}

.

For a path (S0, S1, . . . , Sn−2ℓ) in P (n− 2ℓ), define the range of the path to be

Rng(S0, S1, . . . , Sn−2ℓ) =
{

Si
∣

∣ 0 ≤ i ≤ n− 2ℓ
}

.

Loosely speaking, the following proposition shows that, conditioned on the set of non-constant
layers, a random homomorphism in H0 is a random walk bridge.

Proposition 3.6. Let I = {i1 < i2 < · · · < iℓ} ⊆ [n − 1] be a set of size ℓ such that for all
i ∈ [n − 2], either i 6∈ I or i + 1 6∈ I. Then there exists a bijection ϕ between H(I, n) and
P (n− 2ℓ) × V ℓ. Furthermore, denote ϕ = (ϕ1, ϕ2). Then for all f ∈ H(I, n),

RC(f) = Rng(ϕ1(f)).

For the rest of this section we prove Proposition 3.6.

3.2.4 Proof of Proposition 3.6

We prove the proposition by induction on ℓ. The induction step is based on the following claim.
The claim shows that given a non-constant layer in a homomorphism f of Cn,k, we can think of
f as a homomorphism of Cn−2,k.

In what follows, for simplicity, we use the following convention: For a homomorphism f ∈ Hn,k,
and integers i ∈ N and s ∈ [k], we define f(i, s) = f(i (mod n), s).

Claim 3.7. Let I = {i1 < · · · < iℓ} ⊆ [n − 1] be a set of size ℓ such that for every i ∈ [n − 2],
either i 6∈ I or i+ 1 6∈ I. Let f ∈ H(I, n) be a homomorphism. Define f ′ ∈ H(I \ {iℓ} , n− 2) by

∀ i ∈ [0, n − 3] s ∈ [k] f ′(i, s) =

{

f(i, s) i < iℓ
f(i+ 2, s) i ≥ iℓ.

Define vf ∈ V by
∀ s ∈ [k] vf (s) = f(iℓ, s) − f(iℓ − 1, s).

Then the map Φ : H(I, n) → H(I \ {iℓ} , n− 2) × V defined by Φ(f) = (f ′, vf ) is a bijection.

Proof. First we show that f ′ and vf are well defined:

For f ′, choose some i ∈ [0, n − 3] and s, t ∈ [k]. If i+ 1 < iℓ, then

f ′(i+ 1, s) − f ′(i, t) = f(i+ 1, s) − f(i, t) ∈ {1,−1} .

If i ≥ iℓ then
f ′(i+ 1, s) − f ′(i, t) = f(i+ 3, s) − f(i+ 2, t) ∈ {1,−1} .

We are left with the case i = iℓ − 1. Since the iℓ-layer is non-constant in f , by Claim 3.3,
f(i+ 2, t) = f(i, t). Thus,

f ′(i+ 1, s) − f ′(i, t) = f(i+ 3, s) − f(i, t) = f(i+ 3, s) − f(i+ 2, t) ∈ {1,−1} .
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So f ′ ∈ Hn−2,k. Since iℓ > 0, for all s ∈ [k], we have f ′(0, s) = f(0, s) = 0. Thus, f ′ ∈ H0
n−2,k.

Also, for any layer i < iℓ, since f ′({i} × [k]) = f({i} × [k]), we get that for any i < iℓ,

the i-layer is constant in f ′ ⇔ the i-layer is constant in f.

For any i ≥ iℓ, we have that f ′({i}× [k]) = f({i+ 2}× [k]). Since i+ 2 > iℓ, the (i+ 2)-layer is
constant in f , which implies that the i-layer is constant in f ′. So, the set of non-constant layers
in f ′ is the set I \ {iℓ}, and f ′ ∈ H(I \ {iℓ} , n− 2).

Now we show that vf is well defined: Since the iℓ-layer is non-constant in f , using Claim 3.3,
there exist s, t ∈ [k] such that vf (s) 6= vf (t), so vf is in V .

To show that Φ is a bijection, we provide the inverse map Ψ = Φ−1. Define

Ψ : H(I \ {iℓ} , n− 2) × V → H(I, n)

as follows: For a pair g′ ∈ H(I \ {iℓ} , n− 2) and v ∈ V , define g ∈ H(I, n) by

∀ i ∈ [0, n − 1] s ∈ [k] g(i, s) =







g′(i, s) i < iℓ
g′(i− 1, s) + v(s) i = iℓ
g′(i− 2, s) i ≥ iℓ + 1,

and define Ψ(g′, v) = g.

Claim. g ∈ H(I, n).

Proof. Choose some i ∈ [0, n − 1] and s, t ∈ [k]. If i+ 1 < iℓ, then

g(i+ 1, s) − g(i, t) = g′(i+ 1, s) − g′(i, t) ∈ {1,−1} .

If i ≥ iℓ + 1, then

g(i + 1, s) − g(i, t) = g′(i− 1, s) − g′(i− 2, t) ∈ {1,−1} .

If i = iℓ − 1, then, using Claim 3.3,

g(i + 1, s) − g(i, t) = g′(i, s) + v(s) − g′(i, t) = v(s) ∈ {1,−1} .

If i = iℓ, then, using Claim 3.3,

g(i+ 1, s) − g(i, t) = g′(i− 1, s) − (g′(i− 1, t) + v(t)) ∈ {1,−1} .

So g ∈ Hn,k.

Now, since iℓ > 0, we have that g({0} × [k]) = g′({0} × [k]) = {0}. So g ∈ H0
n,k.

Finally, for i < iℓ, we have that g({i} × [k]) = g′({i} × [k]). Thus, for i < iℓ, we have that

the i-layer is constant in g ⇔ the i-layer is constant in g′.

If i > iℓ, then g({i} × [k]) = g′({i− 2} × [k]). Since i − 2 > iℓ − 2, we have i − 2 6∈ I \ {iℓ}.
Hence, the (i− 2)-layer is constant in g′, and so the i-layer is constant in g. If i = iℓ, then, since
i− 1 6∈ I \ {iℓ}, the (i− 1)-layer is constant in g′. Also

v 6∈ {(1, 1, . . . , 1), (−1,−1, . . . ,−1)} .
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So we have that the i-layer is non-constant in g (since g({i} × [k]) =
{g′(i− 1, 1) − 1, g′(i− 1, 1) + 1}).
Thus, the set of non-constant layers of g is

(I \ {iℓ}) ∪ {iℓ} = I.

So g ∈ H(I, n), proving the claim. ⊓⊔

Now, let f ∈ H(I, n) and let g = Ψ(Φ(f)). Let i ∈ [0, n − 1] and let s ∈ [k]. If i − 2 = iℓ − 1,
then since the iℓ-layer is non-constant in f , using Claim 3.3,

f ′(i− 2, s) = f(iℓ − 1, s) = f(iℓ + 1, s) = f(i, s).

If i−2 > iℓ−1, then f ′(i−2, s) = f(i, s). So, if i−2 ≥ iℓ−1, we have that f ′(i−2, s) = f(i, s).
Thus, for all i ∈ [0, n − 1] and s ∈ [k],

g(i, s) =







f ′(i, s) = f(i, s) i < iℓ
f ′(i− 1, s) + vf (s) = f(i− 1, s) + f(iℓ, s) − f(iℓ − 1, s) i = iℓ
f ′(i− 2, s) = f(i, s) i ≥ iℓ + 1.

So g ≡ f , and Ψ = Φ−1. Thus, Φ is a bijection as claimed. ⊓⊔

Claim 3.8. Let Φ : H(I, n) → H(I \ {iℓ} , n− 2) × V be the bijection defined in Claim 3.7. Let
f ∈ H(I, n) be a homomorphism, and let (f ′, vf ) = Φ(f). Then

RC(f) = RC(f ′).

Proof. Let z ∈ RC(f). So there exists 0 ≤ i ≤ n − 1 such that f(i, 1) = z and the i-layer is
constant in f .

If i < iℓ, then f ′({i} × [k]) = f({i} × [k]) = {z}, and so the i-layer is constant in f ′. Thus,
z = f ′(i, 1) ∈ RC(f ′).

We can exclude the case i = iℓ, because the iℓ-layer is non-constant in f .

If i = iℓ + 1, then using Claim 3.3, for all s ∈ [k], since the i-layer is constant in f ,

f ′(i− 2, s) = f(iℓ − 1, s) = f(iℓ + 1, s) = f(i, s) = z.

So, the (i− 2)-layer is constant in f ′, and z = f ′(i− 2, 1) ∈ RC(f ′).

If i > iℓ + 1, then f ′({i− 2} × [k]) = f({i} × [k]) = {z}. So, the (i− 2)-layer is constant in f ′,
and z = f ′(i− 2, 1) ∈ RC(f ′).

This establishes RC(f) ⊆ RC(f ′).

Now let z ∈ RC(f ′). So, there exists 0 ≤ i ≤ n − 3 such that f ′(i, 1) = z and the i-layer is
constant in f ′.

If i < iℓ, then f({i} × [k]) = f ′({i} × [k]) = {z}. So, the i-layer is constant in f , and z =
f(i, 1) ∈ RC(f).

If i ≥ iℓ, then f({i+ 2} × [k]) = f ′({i} × [k]) = {z}. So, the (i + 2)-layer is constant in f and
z = f(i+ 2, 1) ∈ RC(f).

So, RC(f ′) ⊆ RC(f), which implies RC(f) = RC(f ′). ⊓⊔
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Back to the proof of Proposition 3.6. Loosely speaking, we define ϕ to be ℓ compositions of Φ,
where Φ is the map defined in Claim 3.7.

Let f ∈ H(I, n) be a homomorphism. For an integer j ∈ [1, ℓ], define the set

Ij = {i1 < i2 < · · · < iℓ−j} .

Define ℓ homomorphisms f1, . . . , fℓ and ℓ vectors v1, . . . , vℓ inductively as follows: (f1, v1) =
Φ(f), and (fj, vj) = Φ(fj−1). By Claim 3.7, for every j ∈ [1, ℓ], we have fj ∈ H(Ij, n − 2j).
Since Iℓ = ∅, we have fℓ ∈ H(∅, n − 2ℓ). By Claims 3.7 and 3.8, the map

f 7→ (fℓ, v1, . . . , vℓ)

is a bijection, and

RC(f) = RC(f1) = · · · = RC(fℓ). (6)

We claim that there exists a bijection ψ : H(∅, n − 2ℓ) → P (n − 2ℓ) such that for all g ∈
H(∅, n − 2ℓ),

RC(g) = Rng(ψ(g)). (7)

Indeed, let g ∈ H(∅, n − 2ℓ). Then, ψ(g) = (g(0, 1), g(1, 1), . . . , g(n − 2ℓ, 1)) is a path of length
n−2ℓ in Z, starting at 0 and ending at 0. Furthermore, (7) holds. Note that homomorphisms in
H(∅, n − 2ℓ) do not have non-constant layers. So given a path (S0, S1, . . . , Sn−2ℓ) in P (n − 2ℓ),
we can define g′ ∈ H(∅, n − 2ℓ) by

∀ i ∈ Zn−2ℓ s ∈ [k] g′(i, s) = Si.

Since ψ(g′) = (S0, S1, . . . , Sn−2ℓ), it follows that ψ is a bijection.

Finally, define ϕ as follows:

ϕ : H(I, n) → P (n− 2ℓ) × V ℓ ϕ(f) = ((S0, . . . , Sn−2ℓ), (v1, . . . , vℓ)),

where (S0, . . . , Sn−2ℓ) = ψ(fℓ). By (6) and (7), we have RC(f) = Rng(S0, . . . , Sn−2ℓ). ⊓⊔

3.3 The Size of H0

Fix n, k ∈ N (n is even) for the rest of this section. We consider H0 = H0
n,k. Note that, by

Claim 3.3, every f ∈ H0 has at most n/2 non-constant layers. Thus,

∣

∣H0
∣

∣ =

n/2
∑

ℓ=0

∣

∣H0(ℓ)
∣

∣ , (8)

where H0(ℓ) is the set of homomorphisms of Cn,k that have exactly ℓ non-constant layers.

The following lemma gives a formula for the size of H0(ℓ).

Lemma 3.9. Let ℓ ∈ [0, n/2]. Then

∣

∣H0(ℓ)
∣

∣ =

(

n− ℓ

ℓ

)(

n− 2ℓ

n/2 − ℓ

)

(2k − 2)ℓ.
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Proof. If k = 1, then

H0(ℓ) =

{
(

n
n/2

)

ℓ = 0

0 ℓ > 0,

proving the lemma. So assume that k > 1. Define a family of sets

I =
{

I ⊆ [n − 1]
∣

∣ |I| = ℓ and for every i ∈ [n− 2], either i 6∈ I or i+ 1 6∈ I
}

.

Let f ∈ H0(ℓ) be a homomorphism. Recall that NC(f) is the set of non-constant layers of f .
Since f ∈ H0, we have 0 6∈ NC(f), which implies that NC(f) ⊆ [n − 1]. Since f ∈ H0(ℓ), we
have |NC(f)| = ℓ. Using Claim 3.3, for every i ∈ [n − 2], either i 6∈ NC(f) or i + 1 6∈ NC(f).
Therefore, NC(f) ∈ I. Furthermore, for every set I ∈ I, there exists a homomorphism g ∈ H0(ℓ)
such that NC(g) = I (since k > 1). Hence,

I =
{

NC(f)
∣

∣ f ∈ H0(ℓ)
}

. (9)

Define a map ρ : I →
([n−ℓ]

ℓ

)

(where
([n−ℓ]

ℓ

)

is the family of subsets of [n− ℓ] of size ℓ) as follows:

∀ I = {i1 < · · · < iℓ} ∈ I ρ(I) = {i1 < i2 − 1 < i3 − 2 < · · · < iℓ − (ℓ− 1)} .

For I = {i1 < · · · < iℓ} ∈ I, since |I| = ℓ and since for every i ∈ [n− 2], either i 6∈ I or i+ 1 6∈ I,
the set ρ(I) is a subset of [n− ℓ] of size ℓ. So ρ is well defined.

Claim 3.10. The map ρ is a bijection between I and
([n−ℓ]

ℓ

)

.

Proof. For a set J = {j1 < · · · < jℓ} ⊆ [n− ℓ], define the map ρ−1 by

ρ−1(J) = {j1 < j2 + 1 < · · · < jℓ + (ℓ− 1)} .

Thus, ρ−1(J) is of size ℓ and for every i ∈ [n − 2], either i 6∈ ρ−1(J) or i + 1 6∈ ρ−1(J), which
implies ρ−1(J) ∈ I. Since every I ∈ I admits ρ−1(ρ(I)) = I, it follows that ρ is a bijection. ⊓⊔

Back to the proof of Lemma 3.9. By (9),

∣

∣H0(ℓ)
∣

∣ =
∑

I∈I

|H(I, n)| ,

where H(I, n) is the set of homomorphisms f ∈ H0 such that NC(f) = I. By Proposition 3.6,
for every I ∈ I,

|H(I, n)| = |P(n − 2ℓ)| |V |ℓ =

(

n− 2ℓ

n/2 − ℓ

)

(2k − 2)ℓ.

By Claim 3.10,

|I| =

(

n− ℓ

ℓ

)

.

So the lemma follows. ⊓⊔

3.4 Upper Bound for k = 2 log n + ω(1) - Theorem 3.1

In this part we show that for k = 2 log n + ω(1), the range of a random homomorphism from
Cn,k to Z is 3, with high probability. We use the formula for

∣

∣H0(ℓ)
∣

∣ to conclude that f has n/2
non-constant layers, with high probability. Which implies that f is “almost” constant.
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3.4.1 Many Non-constant Layers

To prove Theorem 3.1, we use the following lemma, which states that there are n/2 non-constant
layers in a random homomorphism of Cn,k. Note that, by Claim 3.3, the maximal number of
non-constant layers in every homomorphism of Cn,k is n/2.

Lemma 3.11. Let n ∈ N be even, and let k = k(n) ≥ 2 log n+ψ(n), where ψ : N → R
+ is such

that limn→∞ ψ(n) = ∞. Let fn ∈R H0
n,k be a random homomorphism. Then

Pr[|NC(fn)| = n/2] = 1 − o(1).

Proof. Fix n ∈ N, let H0 = H0
n,k(n), and let f = fn ∈R H0 be a random homomorphism. For

every ℓ ∈ [0, n/2], denote h0(ℓ) =
∣

∣H0(ℓ)
∣

∣. By Lemma 3.9, every ℓ ∈ [0, n/2] admits

h0(ℓ) =

(

n− ℓ

ℓ

)(

n− 2ℓ

n/2 − ℓ

)

(2k − 2)ℓ,

which implies

h0(ℓ+ 1)

h0(ℓ)
=

(n− 2ℓ)(n − 2ℓ− 1)(n/2 − ℓ)2(2k − 2)

(n− ℓ)(ℓ+ 1)(n − 2ℓ)(n− 2ℓ− 1)
=

(n/2 − ℓ)2(2k − 2)

(n− ℓ)(ℓ+ 1)
.

Thus, since k ≥ 2 log n+ ψ(n) and since n ≥ 2, every 0 ≤ ℓ < n/2 admits

h0(ℓ+ 1)

h0(ℓ)
≥ 2ψ(n).

Thus, every 0 ≤ ℓ < n/2 admits

h0(n/2)

h0(ℓ)
≥ (2ψ(n))n/2−ℓ,

which implies

∑

0≤ℓ<n/2

h0(ℓ) =
∑

0≤ℓ<n/2

h0(n/2)
h0(ℓ)

h0(n/2)
≤ h0(n/2)

∑

0≤ℓ<n/2

(2ψ(n))ℓ−n/2 = o(h0(n/2)),

where the last equality holds, since limn→∞ ψ(n) = ∞. Thus,

Pr[|NC(f)| = n/2] =
h0(n/2)

∑

0≤ℓ≤n/2 h
0(ℓ)

= 1 − o(1).

⊓⊔

3.4.2 Proof of Theorem 3.1

Denote f = fn, and consider the following two cases:

Case one: Assume that f ∈R H0
n,k. By Lemma 3.11, with probability 1 − o(1), there are n/2

non-constant layers in f . Thus, since n is even and since the 0-layer is constant in f , using
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Claim 3.3, all the odd layers are non-constant in f . Therefore, all the even layers are mapped
to 0. Hence, with probability 1 − o(1), we have f(Cn,k) ⊆ {−1, 0, 1}, and R(f) ≤ 3.

Case two: Assume that f ∈R Hn,k \ H0
n,k. By Claim 3.5, we have that f↓ is uniformly

distributed in H0
n−2,k. Hence, by Lemma 3.11, with probability 1 − o(1), there are n/2 − 1

non-constant layers in f↓. Thus, by definition of f↓, including the 0-layer, there are n/2 non-
constant layers in f . Hence, by Claim 3.3, all the even layers are non-constant in f , and all
the odd layers are constant in f . Hence, with probability 1 − o(1), either f(Cn,k) ⊆ {0, 1, 2} or
f(Cn,k) ⊆ {0,−1,−2}. Therefore, with probability 1 − o(1), we have R(f) ≤ 3. ⊓⊔

3.5 The Number of Non-constant Layers Determines the Range

In the previous section we have seen that if the number of non-constant layers is large, then
the range is small. In this section we show that, in fact, the number of non-constant layers
determines the range of a random homomorphism. The following lemma gives a lower bound
on the range of a random homomorphism of Cn,k with exactly ℓ non-constant layers. The lower
bound is determined by ℓ. We note that a similar upper bound can be proven.

Lemma 3.12. Let n ∈ N be even, and let k = k(n) ∈ N. Let ℓ = ℓ(n) ∈ N be such that
limn→∞(n − 2ℓ) = ∞. Let fn ∈R H0

n,k(ℓ) be a random homomorphism from Cn,k to Z with
exactly ℓ non-constant layers such that f({0} × [k]) = {0}. Then for every α > 0,

Pr
[

R(fn) ≥ α
√
n− 2ℓ

]

≥ (1 − o(1))(1 − 2α2),

where the o(1) term is as n tends to infinity, and is independent of α.

Loosely speaking, the proof of the lemma is as follows. Conditioned on f having ℓ non-constant
layers, f corresponds to a random walk bridge of length n− 2ℓ. Since the range of such a walk
is roughly

√
n− 2ℓ, the range of f is roughly

√
n− 2ℓ.

3.5.1 Proof of Lemma 3.12

Recall that for an even m ∈ N, we defined P(m) to be the set of paths on Z of length m that
start at 0 and end at 0. The following proposition shows that, with high probability, the range
of a random walk bridge of length m is at least Ω(

√
m).

Proposition 3.13. Let m ∈ N be even, and let (S0, S1, . . . , Sm) ∈R P(m) be a random walk
bridge of length m. Then for every α > 0,

Pr[|{S0, S1, . . . , Sm}| ≥ α
√
m] ≥ (1 − o(1))(1 − 2α2),

where the o(1) term is as m tends to infinity, and is independent of α.

First we use the proposition to prove the lemma. Fix n ∈ N. Partition H0(ℓ) as follows:

H0(ℓ) =
⋃

I

H(I, n),
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where I ⊆ [n − 1], and H(I, n) is the set of homomorphisms f ∈ H0(ℓ) such that NC(f) = I.
Note that by Claim 3.3, if H(I, n) 6= ∅, then |I| = ℓ and for all i ∈ [n − 2], either i 6∈ I or
i+ 1 6∈ I.

Fix I such that H(I, n) 6= ∅, and let g ∈R H(I, n). Denote

((S0, S1, . . . , Sn−2ℓ), (v1, . . . , vℓ)) = ϕ(g),

where ϕ is the bijection given by Proposition 3.6. Thus, by Proposition 3.6, we have R(g) ≥
|{S0, S1, . . . , Sn−2ℓ}|, and (S0, S1, . . . , Sn−2ℓ) is uniformly distributed in P(n − 2ℓ).

Let f = fn ∈R H0(ℓ) be a random homomorphism. Then, for all I such that H(I, n) 6= ∅,

Pr
[

R(f) ≥ α
√
n− 2ℓ

∣

∣

∣
f ∈ H(I, n)

]

≥ Pr
[

|{S0, S1, . . . , Sn−2ℓ}| ≥ α
√
n− 2ℓ

]

,

where (S0, , . . . , Sn−2ℓ) ∈R P(n− 2ℓ) is a random walk bridge. Thus, we have

Pr
[

R(f) ≥ α
√
n− 2ℓ

]

=
∑

I

Pr
[

R(f) ≥ α
√
n− 2ℓ

∣

∣

∣
f ∈ H(I, n)

]

Pr[f ∈ H(I, n)]

≥ Pr
[

|{S0, S1, . . . , Sn−2ℓ}| ≥ α
√
n− 2ℓ

]

, (10)

where the sum is over all sets I ⊆ [n − 1] such that H(I, n) 6= ∅. Thus, by Proposition 3.13,
since limn→∞(n− 2ℓ) = ∞,

(10) ≥ (1 − o(1))
(

1 − 2α2
)

,

and the o(1) term is as n tends to infinity, and is independent of α. ⊓⊔

3.5.2 Proof of Proposition 3.13

If α ≥ 1, then the Proposition follows. Thus, assume α < 1.

Let T ∈ [m]. Before proving the proposition we show that a path in Z of length m from 0 to 0
that passes through T corresponds to a path in Z of length m from 0 to 2T . Formally,

Claim 3.14. There exists a bijection between paths in P(m) that pass through T and paths in
Z of length m that start at 0 and end at 2T .

Proof. Let (S0, S1, . . . , Sm) ∈ P(m) be such that there exists j ∈ [m] that admits Sj = T . Let
j∗ = min

{

j ∈ [m]
∣

∣ Sj = T
}

. The bijection is reflecting the path around T from j∗ onwards.
That is, for j ∈ [0, j∗] set S′

j = Sj, and for j ∈ [j∗ + 1,m] set S′
j = 2T − Sj. Thus, S′

0 = 0,
S′
j∗ = T and S′

m = 2T . Furthermore, (S′
0, S

′
1, . . . , S

′
m) is a path in Z of length m such that

S′
0 = 0 and S′

m = 2T . Note that j∗ is also the first time that S′ passes through T .

Since every path in Z of length m that starts at 0 and ends at 2T passes through T , the
above defined map is a bijection. Indeed, we show how to invert the above defined map. Let

0 = S′
0, . . . , S

′
m = 2T be a path in Z of length m. Let j∗ = min

{

j ∈ [m]
∣

∣ S′
j = T

}

. For

j ∈ [0, j∗] set Sj = S′
j, and for j ∈ [j∗ + 1,m] set Sj = 2T − S′

j. ⊓⊔
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Since there are
(

m
m/2−T

)

paths in Z of length m that start at 0 and end at 2T , using Claim 3.14,

Pr[|{S0, S1, . . . , Sm}| ≥ T ] ≥ Pr[∃ j ∈ [m] : Sj = T ] =

(

m
m/2−T

)

( m
m/2

) . (11)

Using Stirling’s formula (recall that for x ≥ 0, we have 1−x ≤ e−x and 1+x ≤ ex), substituting
T = α

√
m, we have

(11) =
(m/2)!(m/2)!

(m/2 − T )!(m/2 + T )!

= (1 − o(1))

(

1 − 2T

m

)−m/2+T (

1 +
2T

m

)−m/2−T

= (1 − o(1))

(

1 − 4T 2

m2

)−m/2+T (

1 +
2T

m

)−2T

≥ (1 − o(1))e
4T

2

m2
(m/2−T )− 4T

2

m

≥ (1 − o(1))

(

1 − 2T 2

m

)

= (1 − o(1))(1 − 2α2),

where the o(1) term is as m tends to infinity, and is independent of α, since α < 1. ⊓⊔

3.6 A Lower Bound for k = 2 log n − ω(1) - Theorem 3.2

In this part we show that for k = 2 log n − ω(1), the range of a random homomorphism from
Cn,k to Z is super-constant, with high probability. The proof plan is as follows: First, we prove
that there are many constant layers in a random homomorphism f . Second, using Lemma 3.12,
we conclude that the range of f is large.

3.6.1 Many Constant Layers

The following lemma shows that a random homomorphism of Cn,k has many constant layers.

Lemma 3.15. Let n ∈ N be even, and let k = k(n) = 2 log n − ψ(n), where ψ : N → R
+ is

monotone and limn→∞ ψ(n) = ∞. Let fn ∈R Hn,k be a random homomorphism. Let β : N → R
+

be such that for large enough n ∈ N, we have β(n) ≤ n/4. Then for large enough n ∈ N, we
have

Pr [|NC(fn)| > n/2 − β] ≤ 16β22−ψ(n).

Proof. Fix some large enough n ∈ N such that β ≤ n/4. For ℓ ∈ [0, n/2], set h0(ℓ) =
∣

∣

∣
H0
n,k(ℓ)

∣

∣

∣
.

Let ℓ ∈ [n/2 − β, n/2 − 1], then by Lemma 3.9, since β ≤ n/4,

h0(ℓ+ 1)

h0(ℓ)
=

(n/2 − ℓ)2(2k − 2)

(n− ℓ)(ℓ+ 1)
≤ 4β22k

n(n− 2β)
≤ 8β22−ψ(n).
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Hence, setting γ = 8β22−ψ(n), every ℓ ∈ [n/2 − β, n/2] admits

h0(ℓ)

h0(n/2 − β)
≤ γℓ−(n/2−β).

Thus, (if γ ≥ 1/2, the claim follows) since γ < 1/2,

Pr [|NC(fn)| > n/2 − β] ≤ 1

h0(n/2 − β)

n/2
∑

ℓ=n/2−β+1

h0(ℓ) ≤
∞
∑

i=1

γi ≤ 2γ.

⊓⊔

3.6.2 Proof of Theorem 3.2

First we consider homomorphisms in H0.

Claim 3.16. Let n ∈ N be even, and let k = k(n) = 2 log n − ψ(n), where ψ : N → R
+ is

monotone and limn→∞ ψ(n) = ∞. Let fn ∈R H0
n,k be a random homomorphism. Let ε : N → R

+

be such that for large enough n ∈ N, we have ε(n) ≤ 1/8 and limn→∞ ε(n)2ψ(n)/2 = ∞. Then

Pr
[

R(fn) ≥
√

2 ε2ψ(n)/4
]

≥ (1 − o(1))(1 − 2ε)2.

Proof. Consider large enough n ∈ N such that ε(n) ≤ 1/8. Set β = β(n) = ε(n)2ψ(n)/2. Note
that limn→∞ β(n) = ∞. Since 1 ≤ k = 2 log n − ψ(n) and ε < 1/4, we have β ≤ n/4. Let
ℓ = ℓ(n) ∈ [0, n/2 − β], then limn→∞(n− 2ℓ) ≥ limn→∞ 2β(n) = ∞. Thus, by Lemma 3.12, for
any α > 0,

Pr
[

R(fn) ≥ α
√

2β
∣

∣ fn ∈ H0(ℓ)
]

≥ Pr
[

R(fn) ≥ α
√
n− 2ℓ

∣

∣ fn ∈ H0(ℓ)
]

≥ (1− o(1))(1− 2α2).

Thus, for any α > 0,

Pr
[

R(fn) ≥ α
√

2β
]

≥
n/2−β
∑

ℓ=0

Pr
[

R(fn) ≥ α
√

2β
∣

∣ fn ∈ H0(ℓ)
]

Pr
[

fn ∈ H0(ℓ)
]

≥ (1 − o(1))(1 − 2α2) Pr [|NC(fn)| ≤ n/2 − β] . (12)

By Lemma 3.15,

(12) ≥ (1 − o(1))(1 − 2α2)(1 − 16β22−ψ(n)) = (1 − o(1))(1 − 2α2)(1 − 16ε2).

Taking α =
√
ε, since ε ≤ 1/8, we have

Pr
[

R(fn) ≥
√

2 ε2ψ(n)/4
]

≥ (1 − o(1))(1 − 2ε)(1 − 16ε2) ≥ (1 − o(1))(1 − 2ε)2.

⊓⊔

Remark 3.17. If k = 1, then fn ∈R H0
n,k is a random walk bridge of length n. In this case,

Claim 3.16 gives the bound

Pr
[

R(fn) ≥ 21/4ε
√
n
]

≥ (1 − o(1))(1 − 2ε)2.
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Back to the proof of Theorem 3.2. Set ε = 2−1/2ψ(n)−1. Note that limn→∞ ε(n) = 0, and
limn→∞ ε(n)2ψ(n)/2 = ∞. We denote f = fn ∈R Hn,k. Consider the following two cases:

Case one: Assume that f ∈R H0
n,k. By Claim 3.16, with probability at least

(1 − o(1))(1 − 2ε)2 = 1 − o(1),

the range of f is at least
ψ(n)−12ψ(n)/4.

Case two: Assume that f ∈R Hn,k\H0
n,k. By Claim 3.5, we have that f↓ is uniformly distributed

in H0
n−2,k. Thus, by Claim 3.16, with probability at least

(1 − o(1))(1 − 2ε)2 = 1 − o(1),

the range of f↓ is at least

ψ(n− 2)−12ψ(n−2)/4.

By definition of f↓, the size of the range of f is at least the size of the range of f↓. So, with
probability 1−o(1), the range of f is at least ψ(n)−12ψ(n−2)/4 (recall that ψ(n) is monotone). ⊓⊔

4 Further Research

We list some possible further research directions regarding random homomorphisms of graphs:

1. Let G be a graph. A function f : G→ Z is called Lipschitz if it satisfies

∀ v ∼ u ∈ G |f(u) − f(v)| ≤ 1.

Note that a homomorphism is always Lipschitz, but typically the set of homomorphisms
is much smaller than the set of Lipschitz functions. For a graph G and a vertex v ∈ G,
define Lip0

v(G,Z) to be the set of all Lipschitz functions from G to Z that map v to 0.

Conjecture. Let {Gn} be a family of bi-partite graphs with limn→∞ |Gn| = ∞. Assume
that for all n, Gn has maximal degree d (d independent of n). Let fn ∈R Hom0

vn
(Gn,Z)

be a random homomorphism, and let gn ∈R Lip0
vn

(Gn,Z) be a random Lipschitz function.
Then,

E [R(fn)]

E [R(gn)]
= Θ(1),

where Θ(·) depends on d.

2. Let G be a bi-partite graph, and let ∆ be the diameter of G. For any homomorphism
f ∈ Hom0

v(G,Z), we have that R(f) = O(∆). But this naive bound should not be the
typical bound, at least not for symmetric graphs.

Conjecture. Let {Gn} be a family of vertex transitive bi-partite graphs with
limn→∞ |Gn| = ∞. Let ∆n be the diameter of Gn, and let fn ∈R Hom0

vn
(Gn,Z) be a

random homomorphism. Then,

E [R(fn)] = O
(

√

∆n

)

.
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Note that the conjecture is false if the assumption of vertex transitivity is dropped. Con-
sider, for example, the star graph with ∆ arms of length ∆. This graph has expected range
of Θ(∆).

3. For d ∈ N, let O(d) be the set of all odd positive integers at most d. For an even integer
n ∈ N, let Gn,d be the graph whose vertices are Zn, and edges are defined by the relations

i ∼ j ⇐⇒ ∃ d′ ∈ O(d) i = j + d′ (mod n).

Note that Gn,d is vertex transitive and bi-partite (for all n and d). Note also that the
diameter of Gn,d is Θ(n/d), and the degree of Gn,d is Θ(d).

Conjecture. There exists a constant c > 0 such that

(a) If d = c log(n) − ω(1),
Pr [R(fn) ≥ ω(1)] = 1 − o(1),

where fn ∈R Hom0
0(Gn,d,Z) is a random homomorphism.

(b) There exists a constant b ∈ N such that if d = c log(n) + ω(1), then

Pr [R(fn) ≤ b] = 1 − o(1),

where fn ∈R Hom0
0(Gn,d,Z) is a random homomorphism.

4. In this paper we only consider homomorphisms of graphs into Z. Instead of Z consider
the infinite star with k arms. That is, the graph Sk, whose vertices are

V (Sk) =
{

(i, s)
∣

∣ 0 < i ∈ N , 1 ≤ s ≤ k
}

∪ {0} ,

and edges are (1, s) ∼ 0 for all 1 ≤ s ≤ k, and

∀ 1 < i ∈ N , 1 ≤ s ≤ k , (i, s) ∼ (i± 1, s).

It can be shown (5) that a random homomorphism from the interval [n] to S3, has range
O(log(n)) (as opposed to Θ(

√
n) when the homomorphism is into Z = S2). Is this the case

for all bi-partite graphs G? That is, let {Gn} be a family of bi-partite graphs such that
limn→∞ |Gn| = ∞. Let fn ∈R Hom0

vn
(Gn, S3). Is it true that

E [R(fn)] = O (log |Gn|)?

Or maybe even
lim
n→∞

Pr [R(fn) = O (log |Gn|)] = 1?
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