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Abstract

A necessary and sufficient condition for the tail of an infinitely divisible distribution on the real
line to be estimated by the tail of its Lévy measure is found. The lower limit and the upper limit
of the ratio of the right tail µ(r) of an infinitely divisible distribution µ to the right tail ν(r) of
its Lévy measure ν as r →∞ are estimated from above and below by reviving Teugels’s classical
method. The exponential class and the dominated varying class are studied in detail.

Key words: infinite divisibility, Lévy measure, O-subexponentiality, dominated variation, expo-
nential class.

AMS 2000 Subject Classification: Primary 60E07; Secondary: 60F99.

Submitted to EJP on September 1, 2009, final version accepted December 23, 2009.

∗Dedicated to Professor Ken-iti Sato on his 75-th birthday

44

http://www.math.washington.edu/~ejpecp/


1 Introduction

The study of tails of distributions is important in theoretical and applied probability. In one
direction, it has been developed in relation to infinitely divisible distributions and their Lévy
measures since early works such as Feller [16; 17], Cohen [8], and Embrechts et al. [13]. It
is known that the two-sided case is harder to analyze than the one-sided case (distributions on
R+ = [0,∞)). Let η(r) be the right tail of a measure η, that is, η(r) := η(r,∞) = η((r,∞)). For
positive functions f (r) and g(r), the relation f (r) ∼ g(r) means that limr→∞ f (r)/g(r) = 1. We
define bρ(s) :=

∫

R esxρ(d x) for s ∈ R. Denote by ρ ∗η the convolution of distributions ρ and η.

Definition 1.1. Let ρ be a distribution on R. Suppose that ρ(r)> 0 for all r ∈ R. Let γ≥ 0.

(1) We say ρ ∈ L (γ) if ρ(r + a)∼ e−aγρ(r) for all a ∈ R.

(2) We say ρ ∈ S (γ) if ρ ∈ L (γ), bρ(γ)<∞, and ρ ∗ρ(r)∼ 2bρ(γ)ρ(r).

(3) We say ρ ∈ SD(γ) if, for some a > 0, ρ is a distribution on aZ := {0,±a,±2a, . . .} with
ρ({na})> 0 for all sufficiently large n ∈ Z, and

lim
n→∞

ρ({(n+ 1)a})
ρ({na})

= e−γa

and if bρ(γ)<∞ and

lim
n→∞

ρ ∗ρ({na})
ρ({na})

= 2bρ(γ).

Let L and S denote L (0) and S (0), respectively. The distributions in L and S , respectively, are
called long-tailed and subexponential. Those in S (γ) are called convolution equivalent. The class
L (γ) is often called exponential class.

We say µ ∈ ID+ if µ is an infinitely divisible distribution on R with Lévy measure ν satisfying
ν(r)> 0 for all r ∈ R. Let µ ∈ ID+. We define C∗ and C∗ as

C∗ := lim inf
r→∞

µ(r)
ν(r)

and C∗ := limsup
r→∞

µ(r)
ν(r)

.

If 0 < C∗ ≤ C∗ <∞, then we can estimate the tail µ(r) by the tail ν(r) in a weak sense. That is, for
any ε ∈ (0,1), there is R> 0 such that

(1− ε)C∗ν(r)≤ µ(r)≤ (1+ ε)C∗ν(r) (1.1)

whenever r > R. To make the estimate (1.1) more meaningful, we should give the expression of
C∗ and C∗. But the expression is known only in some special cases. See Theorem 1.3 of [27] for
one-sided strictly semistable distributions. However, there is an important case where the tail µ(r)
is estimated by the tail ν(r) in a stronger sense. Namely, it is proved in Theorem 1.1 of [31] (Lemma
5.3 of Section 5 below) that if µ ∈ S (γ) with γ≥ 0, then there is an explicit C ∈ (0,∞) such that

µ(r)∼ Cν(r). (1.2)

Prior to [31], the case γ = 0 is already treated in the one-sided case by [13] and in the two-sided
case by [24]. There is a lattice-version of the statement above. That is, if µ ∈ SD(γ) on R+ with
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γ ≥ 0, then (1.2) holds with some C ∈ (0,∞). See Theorem 2 of [14]. We do not know whether
the converse is true. Namely, there might be µ 6∈

⋃

γ≥0(S (γ) ∪ SD(γ)) such that (1.2) holds with
C ∈ (0,∞). Thus we are led to the following two problems.

Problem 1. What is a necessary and sufficient condition in order that 0 < C∗ ≤ C∗ < ∞ ? In the
case where 0< C∗ ≤ C∗ <∞, what are the expressions of C∗ and C∗ or the lower and upper bounds
of them ?

Problem 2. What is a necessary and sufficient condition in order that (1.2) holds with 0 < C <∞ ?
In the case where (1.2) holds with 0< C <∞, what is the expression of C ?

We will give answers to Problem 1 and to the second question of Problem 2. A partial answer to the
first question of Problem 2 will be given too. Our results are important from the viewpoint of the
asymptotic estimates of the transition probabilities of Lévy processes.

In Section 2 we give definitions of classes such as OS , OL , H , and D and formulate our main
results in Theorems 2.1, 2.2, and 2.3 and two corollaries. Relations with other works are given in
detail. Section 3 discusses the meaning of OS in infinite divisibility. Section 4 studies a bound
separating C∗ and C∗ for µ ∈H . In Section 5 we prove Theorem 2.1 and its corollaries. In Sections
6 and 7, we prove Theorems 2.2 and 2.3, respectively.

2 Main results

For positive functions f (x) and g(x), the relation f (r)� g(r) means that lim infr→∞ f (r)/g(r)> 0
and limsupr→∞ f (r)/g(r) <∞. We introduce some basic classes of distributions on R in addition
to L (γ), S (γ), and SD(γ) in Definition 1.1.

Definition 2.1. Let ρ be a distribution on R satisfying ρ(r)> 0 for all r ∈ R.
(1) We say ρ ∈ OS if ρ ∗ρ(r)� ρ(r).
(2) We say ρ ∈H if bρ(s) =∞ for all s > 0.
(3) We say ρ ∈ D if ρ(2r)� ρ(r).
(4) We say ρ ∈ OL if ρ(r + a)� ρ(r) for all a ∈ R.

The distributions in OS are called O-subexponential and those in H are sometimes called heavy-
tailed. Those in D are called dominatedly varying.

Remark 2.1. Let γ ≥ 0. The classes in Definitions 1.1 and 2.1 satisfy the following inclusion
relations:
(i) D ∩L ⊂ S ⊂ OS ∩L .
(ii) D ∪L ⊂H .
(iii) D ∪

⋃

γ≥0(S (γ)∪SD(γ))⊂ OS ⊂ OL .
(iv)

⋃

γ≥0L (γ)⊂ OL .

Refer to [15; 19; 27] in the one-sided case. The proofs in the two-sided case are similar.
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Let µ ∈ ID+ with Lévy measure ν . Denote by µt∗ t-th convolution power of µ for t > 0. We define
the normalized Lévy measure ν(1) on (1,∞) by

ν(1)(d x) := c−1
0 1{x>1}(x)ν(d x),

where c0 := ν(1,∞). Define quantities d∗ and γ∗ as

d∗ := limsup
r→∞

ν(1) ∗ ν(1)(r)
ν(1)(r)

,

and
γ∗ := sup{γ≥ 0 : bµ(γ)<∞}.

Under the assumption that ν(1) ∈ OL , we define the following. Let Λ be the totality of increasing
sequences {λn}∞n=1 with limn→∞λn =∞ such that, for every x ∈ R, the following m(x; {λn}) exists
and is finite:

m(x; {λn}) := lim
n→∞

ν(λn− x)
ν(λn)

.

The idea of the use of the function m(x; {λn}) goes back to Teugels [29]. See Remark 5.1 in Section
5 for richness of the set Λ. Given a distribution ρ, define

I∗(ρ) := inf
{λn}∈Λ

∫ ∞

−∞
m(x; {λn})ρ(d x),

I∗(ρ) := sup
{λn}∈Λ

∫ ∞

−∞
m(x; {λn})ρ(d x).

Let B := d∗ − I∗(ν(1))− I∗(ν(1)). Note that 0 ≤ B < ∞ whenever ν(1) ∈ OS , as will be shown in
Lemma 5.2 (iv) of Section 5. Define µ1 as the compound Poisson distribution with Lévy measure
1{x>1}ν(d x) and let µ2 be the infinitely divisible distribution satisfying µ= µ1 ∗µ2. Then, under the
assumption that ν(1) ∈ OS , define

J(µ) :=







I∗(µ2)exp(c0(I∗(ν(1))− 1)) if B = 0,

I∗(µ2)exp(c0(I∗(ν(1))− 1))
exp(c0B)− 1

c0B
if B > 0.

We answer Problem 1 in the main theorem (Theorem 2.1 below). Shimura and Watanabe [27]
solved the first question of Problem 1 in the one-sided case. We will give a method to reduce the
two-sided case to the one-sided case. Concerning the second question, the existing knowledge is
that C∗ ≥ 1 in the one-sided case and that if moreover µ ∈ H , then C∗ = 1. See Proposition 2 of
[11] and the proof of Theorem 7 of [9]. We can give general lower and upper bounds of C∗ and C∗

by evolving the theory of O-subexponentiality with the help of Teugels’s idea. The most involved
part of our discussion is in finding the upper bound of C∗.

Theorem 2.1. Let µ be a distribution in ID+ with Lévy measure ν .

(i) 0< C∗ ≤ C∗ <∞ if and only if ν(1) ∈ OS .
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(ii) Let ν(1) ∈ OS . Then 0≤ γ∗ <∞ and 0< I∗(µ)≤ bµ(γ∗)≤ J(µ)<∞. Moreover

I∗(µ)≤ C∗ ≤ bµ(γ∗), (2.1)

and

bµ(γ∗)≤ C∗ ≤ J(µ). (2.2)

Our results concerning Problem 2 are as follows. The first question in Problem 2 is hard to solve
and our answer (Corollary 2.2 below) is only partial, which is an improvement of Corollary 1.3 of
[27]. It is a long-standing problem for thirty years since [13; 14] and is still open. Moreover, we do
not know yet whether µ ∈ SD(γ) implies ν(1) ∈ SD(γ) in the two-sided case. The second question
is solved by Theorem 1.1 of [31] under the assumption that ν(1) ∈ L (γ) with γ ≥ 0. We show in
Corollary 2.1 below that such an additional assumption is not needed.

Corollary 2.1. Let µ be a distribution in ID+ with Lévy measure ν . If (1.2) holds with 0 < C <∞,
then 0≤ γ∗ <∞, bµ(γ∗)<∞, and C = bµ(γ∗).

Corollary 2.2. Let µ be a distribution in ID+ with Lévy measure ν . Suppose that there are real numbers
a1, a2 with a2 6= 0 and a1/a2 being irrational such that, for a = 0, a1, a2, there is C(a) ∈ (0,∞)
satisfying

µ(r + a)∼ C(a)ν(r).

Then 0≤ γ∗ <∞ and µ ∈ S (γ∗).

Remark 2.2. Suppose that all assumptions of Corollary 2.2 are satisfied except the irrationality of
a1/a2. Then 0≤ γ∗ <∞ and bµ(γ∗)<∞. In case γ∗ = 0 we have µ ∈ S , but in case γ∗ > 0 we may
have µ ∈ SD(γ∗) and µ /∈ S (γ∗).

We present explicit lower and upper bounds of C∗ and C∗ for µ in (L (γ) ∪ D) ∩ ID+ in Theorems
2.2 and 2.3 below. The class L (γ) is extensively studied by [7; 10; 12] in the one-sided case and
by [1; 5; 24] also in the two-sided case. Concerning Theorem 2.2 (i), a recent paper [1] of Albin
contains an assertion that if ν(1) ∈ L (γ), then µ ∈ L (γ). However, his proof for γ > 0 depends on
an incorrect lemma, as will be explained in Remark 6.1 of Section 6. Braverman [5] also proved
that if ν(1) ∈ L (γ) and bν(1)(γ) = ∞, then µ ∈ L (γ) for γ > 0. Applications of the class L (γ) to
Lévy processes are found in [2; 5].

Theorem 2.2. Let µ be a distribution in ID+ with Lévy measure ν . Let γ≥ 0.

(i) If ν(1) ∈ L (γ), then µt∗ ∈ L (γ) for every t > 0. In the converse direction, if µt∗ ∈ L (γ) for every
t > 0 and ν(1) ∈ OS , then ν(1) ∈ L (γ).
(ii) Suppose that ν(1) ∈ L (γ). Then 0< C∗ = bµ(γ)≤∞ and the following are true:
(1) If d∗ = 2bν(1)(γ)<∞, then ν(1) ∈ S (γ) and C∗ = C∗ = bµ(γ)<∞.
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(2) If 2bν(1)(γ)< d∗ <∞, then ν(1) ∈ (L (γ)∩OS )\S (γ) and

bµ(γ)< C∗ ≤ bµ(γ)
exp(c0(d∗− 2bν(1)(γ)))− 1

c0(d∗− 2bν(1)(γ))
<∞. (2.3)

(3) If d∗ =∞, then ν(1) ∈ L (γ)\OS and C∗ =∞.

Remark 2.3. Let γ ≥ 0. There exists µ in ID+ such that ν(1) /∈ L (γ) but µt∗ ∈ L (γ) for all t > 0.
We shall show this in a forthcoming paper. Embrechts and Goldie [10; 12] conjectured that the
class L (γ) is closed under convolution roots. However, Shimura and Watanabe [28] disproved
their conjecture for all γ ≥ 0. We do not know yet whether the class L (γ) ∩ ID+ is closed under
convolution roots.

Remark 2.4. Let γ ≥ 0. We see from Lemma 5.4 of [24] that ν(1) ∈ L (γ) implies d∗ ≥ 2bν(1)(γ).
The class (OS ∩L (γ))\S (γ) is not empty. We know that there are ρ and ρ′ both in S (γ) such
that ρ ∗ ρ′ is not in S (γ). As the classes OS and L (γ) are closed under convolution, this ρ ∗ ρ′

is in OS ∩L (γ). See Lemma 3.1 (iii) of Section 3 and Lemma 2.5 of [31]. Hence this ρ ∗ρ′ is in
(OS ∩L (γ))\S (γ). For example, in the case of γ = 0, we can take the distributions in Section 6
of [23] as ρ and ρ′. In the case of γ > 0, we can take the distributions in the proof of Theorem 2 of
[22] as ρ and ρ′. The classL (γ)\OS is not empty. For example, in the case of γ= 0, a distribution
on R+ in Section 3 of [10] belongs to L\OS . In the case of γ > 0, any distribution ρ ∈ L (γ) with
bρ(γ) =∞ can be taken as ρ ∈ L (γ)\OS , because ρ ∈ OS ∩L (γ) implies bρ(γ) <∞ by Lemma
6.4 of [31]. Thus none of the cases (1)–(3) in Theorem 2.2 (ii) is empty.

Feller [16] started the study of dominated variation of infinitely divisible distributions. But his
assertion that ν(1) ∈ D implies µ(r) ∼ ν(r) is not true. In the following Theorem 2.3 we clarify the
role of dominated variation in our problems. In the one-sided case, Watanabe [30] proved assertion
(i) by preparing a Tauberian theorem similar to Theorem 1 of [20] and Shimura and Watanabe
[27] gave an alternative proof by employing O-subexponentiality. However, they did not discuss the
values of C∗ and C∗ for µ in D ∩ ID+. A result weaker than assertion (ii) is given in Theorem 1 of
Yakimiv [33]. An application of the class D to selfsimilar processes with independent increments is
found in [30].

Define constants Q∗ and Q∗ as

Q∗ := lim
N→∞

lim inf
r→∞

ν(r + N)
ν(r)

,

Q∗ := lim
N→∞

limsup
r→∞

ν(r − N)
ν(r)

= (Q∗)
−1.

Theorem 2.3. Let µ be a distribution in ID+ with Lévy measure ν .

(i) µ ∈ D if and only if ν(1) ∈ D.

(ii) If ν(1) ∈ D, then 0<Q∗ ≤ 1≤Q∗ <∞,

1− (1−Q∗)µ(−∞, 0)≤ C∗ ≤ 1, (2.4)

and

1≤ C∗ ≤Q∗. (2.5)
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Remark 2.5. The class D∩S contains all distributions with regularly varying tails. The lognormal
distributions are infinitely divisible and belong to the class S \D. On the other hand, the Peter and
Paul distribution belongs to the class D \S . One-sided strictly semistable distributions with discrete
Lévy measures are infinitely divisible distributions in the class D \S with C∗ = 1 and C∗ = Q∗ > 1.
See Theorem 1.3 of [27]. We show in Example 7.1 of Section 7 that there exists µ ∈ D ∩ ID+ such
that Q∗ < C∗ < 1< C∗ <Q∗.

3 Class OS and Infinite Divisibility

The class OS was introduced by Shimura and Watanabe [27]. They studied the asymptotic relation
between an infinitely divisible distribution on R+ and its Lévy measure by using O-subexponentiality.
In this section, we extend their results to the two-sided case. Let δa(d x) be the delta measure at
a ∈ R. For a distribution ρ on R, we define

ρ+(d x) := ρ(−∞, 0]δ0(d x) + 1(0,∞)(x)ρ(d x).

Denote by ρn∗ n-th convolution power of ρ with the understanding that ρ0∗(d x) := δ0(d x). Let
µ ∈ ID+ with Lévy measure ν . In what follows, define µ3 as the compound Poisson distribution with
Lévy measure 1{x>c}ν(d x) with c > 1 and let µ4 be the infinitely divisible distribution satisfying
µ= µ3 ∗µ4. We define the distribution ν(c) by

ν(c)(d x) := (ν̄(c))−11{x>c}(x)ν(d x).

We choose sufficiently large c > 1 such that µ4(0,∞)> 0.

Lemma 3.1. Let ρ and η be distributions on R.
(i) If ρ(r)� η(r) for some η ∈ OS , then ρ ∈ OS .
(ii) ρ ∈ OS if and only if ρ+ ∈ OS .
(iii) If ρ,η ∈ OS , then ρ ∗η ∈ OS . In particular, if ρ ∈ OS , then ρn∗ ∈ OS for all n≥ 1.

Proof. First we prove (i). Suppose that ρ(r)� η(r) for some η ∈ OS . Then we have

ρ ∗ρ(r) =
∫

R
ρ(r − y)ρ(d y)

�
∫

R
η(r − y)ρ(d y) =

∫

R
ρ(r − y)η(d y)

�
∫

R
η(r − y)η(d y) = η ∗η(r)

� η(r)� ρ(r). (3.1)

Thus we have ρ ∈ OS . We have ρ(r) = ρ+(r) for r > 0. It follows from (i) that (ii) holds. Suppose
that ρ,η ∈ OS . We see as in (3.1) that

ρ ∗η(r)� ρ+ ∗η+(r). (3.2)
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Thus we obtain from (i), (ii), and Proposition 2.5 of [27] that ρ+ ∗ η+ ∈ OS and thereby
ρ ∗η ∈ OS . The second assertion of (iii) is clear. �

Lemma 3.2. Let ρ be a distribution on R.
(i) If ρ ∈ OS , then ρ ∈ OL .
(ii) If ρ ∈ OL , then there is γ1 ∈ (0,∞) such that bρ(γ1) =∞.
(iii)If ρ ∈ OS , there is K > 0 such that, for all n≥ 1 and r ∈ R,

ρn∗(r)≤ Knρ(r).

Proof. Suppose that ρ ∈ OS . Then ρ+ ∈ OS . Let r > 0. By Proposition 2.1 (ii) of [27], we have
ρ+ ∈ OL and ρ(r + a) = ρ+(r + a) � ρ+(r) = ρ(r) for any a ≥ 0 and thereby ρ ∈ OL . Thus we
have proved (i). We see from Proposition 2.2 of [27] that if ρ ∈ OL , then there is γ1 ∈ (0,∞) such
that bρ+(γ1) = ∞, that is, bρ(γ1) = ∞. Thus assertion (ii) is true. Finally assertion (iii) is due to
Lemma 6.3 (ii) of [31]. �

Lemma 3.3. Let µ be a distribution in ID+. Then µ ∈ OS if and only if µ1 ∈ OS . Furthermore, if
µ ∈ OS , then µ(r)� µ1(r) and µ2(r) = o(µ1(r)) = o(µ(r)).

Proof. Suppose that µ1 ∈ OS . We see from Lemma 3.2 (i) that µ1(log r) is in OR. As regards
the definition of the class OR, see [3]. By virtue of Theorem 2.2.7 of [3], there is c1 > 0 such
that ec1rµ1(r) → ∞ as r → ∞. Furthermore, by Theorem 26.8 of [26], there is c2 > 0 such that
µ2(r) = o(e−c2r log r). Thus µ2(r) = o(µ1(r)) and there is c3 > 0 such that µ2(r) ≤ c3µ1(r). We
obtain that

µ(r) =

∫

R
µ2(r − y)µ1(d y)

≤ c3

∫

R
µ1(r − y)µ1(d y) = c3µ1 ∗µ1(r)� µ1(r).

Choose b ∈ R such that c4 := µ2(b,∞)> 0. Then we have

µ(r)≥
∫ ∞

b+
µ1(r − y)µ2(d y)≥ c4µ1(r − b). (3.3)

Hence by Lemma 3.2 (i) we have µ(r)� µ1(r). It follows from Lemma 3.1 (i) that µ ∈ OS .

Conversely, suppose that µ ∈ OS . It follows that µ2(r) = o(µ(r − b)) in the same way as above.
Let ε > 0. There is a > 0 such that µ2(r)≤ εµ(r − b) for r ≥ a. Hence we have

µ(r + a) ≤
∫ r+

−∞
µ2(r + a− y)µ1(d y) +µ1(r)

≤ ε

∫ r+

−∞
µ(r + a− b− y)µ1(d y) +µ1(r)
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≤ εµ ∗µ1(r + a− b) +µ1(r)

= ε

∫

R
µ1(r + a− b− y)µ(d y) +µ1(r)

≤ εc−1
4

∫

R
µ(r + a− y)µ(d y) +µ1(r)

= εc−1
4 µ ∗µ(r + a) +µ1(r).

Here we used (3.3) in the last inequality. Since µ ∈ OS , there is c5 > 0 such that µ ∗µ(r)≤ c5µ(r).
Hence we have (1− εc−1

4 c5)µ(r + a) ≤ µ1(r). Here we can take ε satisfying εc−1
4 c5 < 1. Therefore

we see from Lemma 3.2 (i) that there is c6 > 0 such that µ(r + b) ≤ c6µ1(r). Combining this
inequality with (3.3), we have µ(r)� µ(r+ b)� µ1(r). Furthermore, we have µ1 ∈ OS by Lemma
3.1 (i). Finally, we see that µ(r)� µ1(r) and µ2(r) = o(µ1(r)) = o(µ(r)). �

Lemma 3.4. (Theorem 1.1 of [27]) Let µ be a distribution on R+ in ID+ with Lévy measure ν .
(i) µ(r)� ν(r) if and only if ν(1) ∈ OS .
(ii) The following statements are equivalent:
(1) µ ∈ OS ;
(2) (ν(1))n∗ ∈ OS for some n≥ 1;
(3) µ(r)� (ν(1))n∗(r) for some n≥ 1.

Next we present the main result of this section.

Propsition 3.1. Let µ be a distribution in ID+ with Lévy measure ν .
(i) We have 0< C∗.
(ii) C∗ <∞ if and only if ν(1) ∈ OS .
(iii) The following statements are equivalent:
(1) µ ∈ OS ;
(2) (ν(1))n∗ ∈ OS for some n≥ 1;
(3) µ(r)� (ν(1))n∗(r) for some n≥ 1.

Remark 3.1. In Proposition 3.1 (iii), we cannot replace statement (2) by the statement ν(1) ∈ OS .
The class OS is not closed under convolution roots. See Remark 1.3 and Proposition 1.1 of [27]
for further details. We see from Proposition 3.1 (iii) that OS ∩ID+ is closed under convolution roots.

Proof of Proposition 3.1. We prove (i). Notice that, for r > 0,

µ3(r) = e−a
∞
∑

n=1

an(n!)−1(ν(c))n∗(r),

with a := ν(c,∞). Then we have

µ(r)
ν(r)

≥
∫

R
e−a ν(c)(r − y)

ν(c)(r)
µ4(d y)
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≥ e−aµ4(0)> 0.

Hence C∗ > 0.

Next we show (ii). We see from Lemma 3.4 that ν(1) ∈ OS if and only if µ1(r) � ν(r). We find
from (i) that C∗ <∞ if and only if µ(r) � ν(r). Suppose that ν(1) ∈ OS . Then µ1(r) � ν(r) and
µ1 ∈ OS . We see from Lemma 3.3 that µ ∈ OS and µ(r)� µ1(r). It follows that µ(r)� ν(r), that
is, C∗ <∞. Conversely, suppose that C∗ <∞, that is, µ(r)� ν(r). Let r > 0 and c7 := µ4(0,∞)> 0.
We have

µ(r)≥
∫

(0,∞)
µ3(r − y)µ4(d y)≥ c7µ3(r). (3.4)

As µ3 is compound Poisson, there is c8 > 0 such that µ3(r) ≥ c8ν(r). Hence we obtain from (3.4)
that c7µ3(r)≤ µ(r)� ν(r)≤ c−1

8 µ3(r). This implies that µ3(r)� ν(r). Hence we see from Lemmas
3.1 (i) and 3.4 (i) that (ν(c))(1) = ν(c) ∈ OS and thereby ν(1) ∈ OS .

Lastly, we prove (iii). Lemma 3.3 states that µ ∈ OS if and only if µ1 ∈ OS . We see from Lemma
3.4 that µ1 ∈ OS if and only if (ν(1))n∗ ∈ OS for some n ≥ 1. Thus we have proved that (1) is

equivalent to (2). Suppose that µ(r) � (ν(1))n∗(r). Since µ3 is compound Poisson, there is c9 > 0

such that µ3(r)≥ c9(ν(c))n∗(r). Hence we obtain from (3.4) that

c7µ3(r)≤ µ(r)� (ν(1))n∗(r)� (ν(c))n∗(r)≤ c−1
9 µ3(r).

This implies that µ3(r) � (ν(c))n∗(r) and thereby we see from Lemma 3.4 that µ3 ∈ OS and
(ν(c))n∗ ∈ OS . It follows that (ν(1))n∗ ∈ OS and thereby µ1 ∈ OS . Thus we find from Lemma 3.3
that µ ∈ OS . Conversely, suppose that µ ∈ OS . We obtain from Lemmas 3.3 and 3.4 (ii) that

µ(r)� µ1(r)� (ν(1))n∗(r)

for some n≥ 1. We have proved that (1) is equivalent to (3). �

4 Bound separating C∗ and C∗ for µ in H

The study of the lower and upper limits of ratios of tails of distributions on R+ was initiated by
[11; 25] and progressed by [9; 18]. Watanabe and Yamamuro [32] discussed them for distributions
on R and showed basic diferrences between the one-sided and two-sided cases. In this section, we
study a bound separating C∗ and C∗ for µ ∈H . We need the following lemma of Denisov et al. [9].

Lemma 4.1. (Lemma 2 of [9]) If a distribution ρ on R+ is in H , then there exists an increasing
concave function h : R+→ R+ such that

∫

R+

eh(x)ρ(d x)<∞ and

∫

R+

xeh(x)ρ(d x) =∞.
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Now we present the main result of this section.

Proposition 4.1. Let µ be a distribution in ID+ with Lévy measure ν .
(i) µ ∈H if and only if ν(1) ∈H .
(ii) If ν(1) ∈H , then 0< C∗ ≤ 1≤ C∗ ≤∞.

Proof. Assertion (i) is obvious by virtue of Theorem 25.17 of [26]. We prove only (ii). Suppose
that ν(1) ∈H . First we show that C∗ ≥ 1. We have

µ(r)
ν(r)

=

∫

R

µ3(r − y)
ν(r)

µ4(d y)≥
µ3(r + a)
ν(r)

µ4(−a) (4.1)

for any a > 0. Let r > 0. We have for any k ≥ 1

(ν(c))k∗(r)≥ ν(c)(r).

Notice that µ3(r) = e−ν(c)
∑∞

n=1 ν(c)
n(n!)−1(ν(c))n∗(r). It follows that

µ3(r + a) = e−ν(c)
∞
∑

n=1

ν(c)n(n!)−1(ν(c))n∗(r + a)

≥ e−ν(c)
∞
∑

n=1

ν(c)n(n!)−1ν(c)(r + a). (4.2)

As ν(1) ∈H , we have ν(c) ∈H . Suppose that, for some a > 0 and δ > 0,

lim sup
r→∞

ν(c)(r + a)

ν(c)(r)
≤ e−δ.

Then there is sufficiently large r0 > 0 such that ν(c)(r0 + ak) ≤ e−kδ/2ν(c)(r0) for all integers k ≥ 1.

Thus we have bν(c)(γ1) = γ1

∫∞
−∞ eγ1 xν(c)(x)d x < ∞ for γ1 := δ/(4a) > 0. This is a contradiction.

Thus we have, for any a > 0,

limsup
r→∞

ν(c)(r + a)

ν(c)(r)
= 1.

Hence we see from (4.1) and (4.2) that

C∗ ≥ limsup
r→∞

µ3(r + a)
ν(c)ν(c)(r)

µ4(−a)

≥ e−ν(c)
∞
∑

n=1

ν(c)n(n!)−1µ4(−a)
ν(c)

=
1− e−ν(c)

ν(c)
µ4(−a).

As a→∞ and c→∞, the right-hand side goes to 1. We have proved that C∗ ≥ 1.

Next we show that C∗ ≤ 1. The proof is suggested by that of Theorem 4 of [9]. Lemma 4.1 is
applied to ν(c). Then we can take a function h(x) of Lemma 4.1. For any b > 0, we consider a
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concave function hb(x) := min{h(x), bx}. Hence there is x1 > 0 such that hb(x) = h(x) for all
x ≥ x1. Thus we have

∫

R+

ehb(x)ν(c)(d x)<∞ and

∫

R+

xehb(x)ν(c)(d x) =∞. (4.3)

Furthermore, we see from Theorem 25.17 of [26] that bµ4(γ)<∞ for all γ > 0. Hence
∫

R
(y ∨ 0)ehb(y∨0)µ4(d y)≤

∫

R+

yeb yµ4(d y)<∞. (4.4)

For real a and t, we use the notation of [9] and put a[t] = min{a, t} and a ∨ t = max{a, t}. Let
t > 0. We note that (x + y)[t] ≤ x[t]+ y[t] for x , y ≥ 0. Hence we obtain that

∫

R
(x ∨ 0)[t]ehb(x∨0)µ(d x) =

∫∫

((x + y)∨ 0)[t]ehb((x+y)∨0)µ3(d x)µ4(d y)

≤
∫∫

(x ∨ 0)[t]ehb((x+y)∨0)µ3(d x)µ4(d y)

+

∫∫

(y ∨ 0)[t]ehb((x+y)∨0)µ3(d x)µ4(d y) = J1+ J2.

By concavity of the function hb(x), we have hb(x + y)≤ hb(x) + hb(y) for x , y ≥ 0. Hence

J1 ≤
∫

R+

x[t]ehb(x)µ3(d x)

∫

R
ehb(y∨0)µ4(d y).

Here we see that, for any positive integer n,
∫

R+

x[t]ehb(x)(ν(c))
n∗(d x)

≤ n

∫

· · ·
∫

R+×···×R+

x[t]1 ehb(x1+···+xn)ν(c)(d x1) · · ·ν(c)(d xn)

≤ n

∫

R+

x[t]1 ehb(x1)ν(c)(d x1)

 

∫

R+

ehb(x)ν(c)(d x)

!n−1

.

Thus it follows that
∫

R+

x[t]ehb(x)µ3(d x)

= e−ν(c)
∞
∑

n=1

ν(c)n

n!

∫

R+

x[t]ehb(x)(ν(c))
n∗(d x)

≤ ν(c)exp



ν(c)

 

∫

R+

ehb(x)ν(c)(d x)− 1

!



∫

R+

x[t]ehb(x)ν(c)(d x). (4.5)
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Therefore we obtain from (4.3) and (4.4) that

limsup
b→0

J1
∫

R+

x[t]ehb(x)ν(c)(d x)
≤ ν(c). (4.6)

Furthermore, we have
∫

R+

ehb(x)µ3(d x)≤ exp



ν(c)

 

∫

R+

ehb(x)ν(c)(d x)− 1

!

 .

Thus it follows from (4.3) and (4.4) that

lim sup
t→∞

J2
∫

R+

x[t]ehb(x)ν(c)(d x)

≤ lim
t→∞

∫

R
ehb(x∨0)µ3(d x)

∫

R+

yehb(y)µ4(d y)

∫

R+

x[t]ehb(x)ν(c)(d x)
= 0. (4.7)

Let δ1 > 0. Consequently, we obtain from (4.6) and (4.7) that, for sufficiently small b and suffi-
ciently large t,

∫

R+

x[t]ehb(x)µ(d x)

∫

R+

x[t]ehb(x)ν(c)(d x)
< ν(c) +δ1. (4.8)

Let x0 > 0. Suppose that µ(x)≥ ν(c)(x)(ν(c) +δ1) for all x ≥ x0. Here we notice that
∫

R+

xehb(x)µ(d x) ≥
∫∫

R+×R+

(x + y)ehb(x+y)µ3(d x)µ4(d y)

≥ µ4(R+)
∫

R+

xehb(x)µ3(d x)

≥ µ4(R+)e−ν(c)ν(c)
∫

R+

xehb(x)ν(c)(d x) =∞. (4.9)

We see from (4.3) and (4.9) that both the numerator and the denominator of (4.8) goes to infinity
as t →∞. Hence we have

lim inf
t→∞

∫

R+

x[t]ehb(x)µ(d x)

∫

R+

x[t]ehb(x)ν(c)(d x)
= lim inf

t→∞

∫ ∞

x0+
x[t]ehb(x)µ(d x)

∫ ∞

x0+
x[t]ehb(x)ν(c)(d x)
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= lim inf
t→∞

∫ ∞

x0+
µ(x)d(x[t]ehb(x))

∫ ∞

x0+
ν(c)(x)d(x

[t]ehb(x))

≥ ν(c) +δ1.

This contradicts (4.8). Hence we have lim infr→∞µ(r)/ν(c)(r) ≤ ν(c) + δ1, because x0 is arbitrary.
Letting δ1 ↓ 0, we obtain that C∗ ≤ 1. We see from Proposition 3.1 (i) that 0< C∗. �

5 Proofs of Theorem 2.1 and Its Corollaries

Let γ ∈ R. We define the class M (γ) as the totality of distributions ρ satisfying bρ(γ) < ∞. For
ρ ∈M (γ), we define the exponential tilt ρ〈γ〉 of ρ as

ρ〈γ〉(d x) :=
1

bρ(γ)
eγxρ(d x). (5.1)

Note that the exponential tilt conserves convolution. That is, for ρ,η ∈M (γ), (ρ∗η)〈γ〉 = ρ〈γ〉∗η〈γ〉.
Let {X j}∞j=0 be i.i.d. random variables with distribution ν(1). Let Y be a random variable with

distribution µ2 independent of {X j}. Define a random walk {Sn}∞n=0 as Sn :=
∑n

j=1 X j for n ≥ 1 and
S0 := 0. Recall that c0 := ν(1,∞).

Lemma 5.1. Let µ be a distribution in ID+ with Lévy measure ν .

(i) If 0≤ γ∗ <∞ and bµ(γ∗) =∞, then C∗ =∞.

(ii) If 0≤ γ∗ <∞ and bµ(γ∗)<∞, then C∗ ≤ bµ(γ∗)≤ C∗.

Proof. Suppose that 0 < γ∗ <∞ and bµ(γ∗) =∞. Since µ ∈ M (γ) for 0 < γ < γ∗, µ〈γ〉 exists. We
have µ〈γ〉 = (µ3)〈γ〉 ∗ (µ4)〈γ〉 and bµ3(γ∗) =∞. Define ν1(d x) := eγxν(d x). Note that ν1 is the Lévy
measure of µ〈γ〉. Since (µ3)〈γ〉 is one-sided, we have

lim inf
r→∞

(µ3)〈γ〉(r)

ν1(r)
≥ 1.

By using integration by parts, we have

µ̄〈γ〉(r) =
eγr µ̄(r)
bµ(γ)

+
γ

bµ(γ)

∫ ∞

r

eγt µ̄(t)d t, (5.2)

and

ν1(r) = eγr ν̄(r) + γ

∫ ∞

r

eγt ν̄(t)d t. (5.3)

Thus we see from Fatou’s lemma that

C∗

bµ(γ)
≥ lim inf

r→∞

µ〈γ〉(r)

ν1(r)
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≥
∫ ∞

0−
lim inf

r→∞

(µ3)〈γ〉(r − y)

ν1(r − y)
(µ4)〈γ〉(d y)

≥
1

bµ4(γ)

∫ ∞

0−
eγyµ4(d y).

Hence we have

C∗ ≥ lim inf
γ↑γ∗

bµ3(γ)

∫ ∞

0−
eγyµ4(d y) =∞.

Thus assertion (i) is true. It is clear from Proposition 4.1 that assertion (ii) is true for γ∗ = 0.
Suppose that 0≤ γ∗ <∞ and bµ(γ∗)<∞. Then we see that µ〈γ∗〉 ∈H . Define ν2(d x) := eγ

∗xν(d x).
Thus we obtain from Proposition 4.1 and (5.2) and (5.3) with replacing γ by γ∗ that

C∗

bµ(γ∗)
≥ lim sup

r→∞

µ〈γ∗〉(r)

ν2(r)
≥ 1,

and
C∗
bµ(γ∗)

≤ lim inf
r→∞

µ〈γ∗〉(r)

ν2(r)
≤ 1.

Thus we have proved the lemma. �

Proposition 5.1. Let µ be a distribution in ID+ with Lévy measure ν . Suppose that ν(1) ∈ OS . Then
we have 0≤ γ∗ <∞, bµ(γ∗)<∞, and 0< C∗ ≤ bµ(γ∗)≤ C∗ <∞.

Proof. Suppose that ν(1) ∈ OS . Then we find from Proposition 3.1 that µ ∈ OS ⊂ OL and
0 < C∗ ≤ C∗ <∞. We see from Lemma 3.2 (ii) that 0 ≤ γ∗ <∞. We see from Lemma 5.1 (i) that
bµ(γ∗)<∞. Thus the proposition follows from Lemma 5.1 (ii). �

Remark 5.1. Suppose that ν(1) ∈ OL . As is mentioned in the proof of Theorem 1 of [29], there
exists an increasing subsequence {λn} ∈ Λ of {xn} for each sequence {xn}∞n=1 with limn→∞ xn =∞.

Proof. Define Tn(y) as

Tn(y) :=
ν(1)(xn− y)

ν(1)(xn)
.

Since {Tn(y)}∞n=1 is a sequence of increasing functions, uniformly bounded on all finite intervals, by
the selection principle (see Chap. VIII of [17]) there exists an increasing subsequence {λn} of {xn}
with limn→∞λn =∞ such that everywhere on R

lim
n→∞

ν(1)(λn− y)

ν(1)(λn)
= lim

n→∞

ν̄(λn− y)
ν̄(λn)

=: m(y; {λn}).

The limit function m(x; {λn}) is increasing and is finite. That is, {λn} ∈ Λ. �

Proposition 5.2. Let µ be a distribution in ID+ with Lévy measure ν . Suppose that ν(1) ∈ OL . Then
we have 0< I∗(µ)≤ C∗ ≤∞.
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Proof. Suppose that ν(1) ∈ OL . Define h∗(x) := lim infr→∞ ν(r − x)/ν(r). Since ν(1) ∈ OL , we
have for {λn} ∈ Λ and x ∈ R,

0< h∗(x)≤ m(x; {λn})<∞.

Thus it follows that 0<
∫∞
−∞ h∗(x)µ(d x)≤ I∗(µ). Choose {λn} ∈ Λ such that

C∗ = lim
k→∞

∞
∑

n=0

e−c0
cn−1
0 P(Y + Sn > λk)

n!P(X0 > λk)
. (5.4)

Define the events A j for 1≤ j ≤ n and b > 0 as

A j := {X j > λk − b and Y + Sn > λk}.

Let Bn := {(i, j) : j 6= i, 1≤ i ≤ n, 1≤ j ≤ n}. We have

P(Y + Sn > λk)≥ P(
n
⋃

j=1

A j)≥
n
∑

j=1

P(A j)−
∑

(i, j)∈Bn

P(Ai ∩ A j). (5.5)

We obtain from Fatou’s lemma that, for 1≤ j ≤ n,

lim inf
k→∞

P(A j)

P(X0 > λk)

≥
∫ b+

−∞
lim inf

k→∞

P(X j > λk − u)P(Y + Sn− X j ∈ du)

P(X0 > λk)

=

∫ b+

−∞
m(u; {λn})P(Y + Sn−1 ∈ du).

Letting b→∞, we have

lim inf
b→∞

lim inf
k→∞

P(A j)

P(X0 > λk)
≥
∫ ∞

−∞
m(u; {λn})P(Y + Sn−1 ∈ du). (5.6)

Moreover, we have, for i 6= j,

lim sup
k→∞

P(Ai ∩ A j)

P(X0 > λk)

≤ lim sup
k→∞

P(X i > λk − b)P(X j > λk − b)

P(X0 > λk)
= m(b; {λn}) · 0= 0. (5.7)

We see from Lemma 3.3 that

lim
k→∞

P(Y > λk)/P(X0 > λk) = 0. (5.8)

Thus we established from (5.4)-(5.8) that

C∗ = lim
k→∞

∞
∑

n=1

e−c0
cn−1
0 P(Y + Sn > λk)

n!P(X0 > λk)
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≥
∞
∑

n=1

e−c0
cn−1
0 n

n!

∫ ∞

−∞
m(u; {λk})P(Y + Sn−1 ∈ du)

≥
∫ ∞

−∞
m(u; {λk})

∞
∑

n=0

e−c0
cn
0

n!
P(Y + Sn ∈ du)

=

∫ ∞

−∞
m(u; {λk})µ(du)≥ I∗(µ).

Thus we have proved the proposition. �

Lemma 5.2. Suppose that ν(1) ∈ OS . Then we have the following:

(i) There are some b1, b2 > 0 such that m(x; {λn})≤ b1eb2(x∨0) for all {λn} ∈ Λ and for all x ∈ R.

(ii) I∗(µ2)<∞.

(iii) For distributions ρ and η, I∗(ρ ∗η)≤ I∗(ρ)I∗(η).

(iv) 2I∗(ν(1))≤ d∗ <∞.

Proof. Suppose that ν(1) ∈ OS . Let {λn} ∈ Λ. Define

h∗(x) := lim sup
r→∞

ν̄(r − x)
ν̄(r)

.

Since OS ⊂ OL , we have m(x; {λk}) ≤ h∗(x) < ∞ and h∗(x + y) ≤ h∗(x)h∗(y). Thus h∗(x)
is so-called submultiplicative and by Lemma 25.5 of [26] there are b1, b2 > 0 such that h∗(x) ≤
b1eb2(x∨0). Thus (i) is true. Since we see from Theorem 25.17 of [26] that bµ2(γ)<∞ for any γ > 0,
we have (ii) by (i). We see that, for x , y ∈ R,

lim
n→∞

ν̄(λn− y − x)
ν̄(λn− y)

=
m(x + y; {λn})

m(y; {λn})
.

Hence {λn− y} ∈ Λ for any y ∈ R. Thus we have

I∗(ρ ∗η) = sup
{λn}∈Λ

∫ ∞

−∞
m(x; {λn})ρ ∗η(d x)

= sup
{λn}∈Λ

∫ ∞

−∞

∫ ∞

−∞
m(x + y; {λn})ρ(d x)η(d y)

= sup
{λn}∈Λ

∫ ∞

−∞
m(x; {λn− y})ρ(d x)

∫ ∞

−∞
m(y; {λn})η(d y)

≤ sup
{λ′n}∈Λ

∫ ∞

−∞
m(x; {λ′n})ρ(d x) sup

{λn}∈Λ

∫ ∞

−∞
m(y; {λn})η(d y)

= I∗(ρ)I∗(η).

We have, for {λn} ∈ Λ and s > 0,

∞ > d∗ ≥ limsup
k→∞

P(X0+ X1 > λk)
P(X0 > λk)
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≥ 2 lim sup
k→∞

∫ s+

−∞

P(X0 > λk − u)
P(X0 > λk)

P(X1 ∈ du)

≥ 2

∫ s+

−∞
lim inf

k→∞

P(X0 > λk − u)
P(X0 > λk)

P(X1 ∈ du)

= 2

∫ s+

−∞
m(u; {λn})P(X1 ∈ du).

Letting s→∞, we see that 2I∗(ν(1))≤ d∗ <∞. �

Proposition 5.3. Let µ be a distribution in ID+ with Lévy measure ν . Suppose that ν(1) ∈ OS . Then
we have C∗ ≤ J(µ)<∞.

Proof. Suppose that ρ := ν(1) ∈ OS . We find from Lemma 5.2 (ii) and (iv) that J(µ) <∞. Define,
for n≥ 0,

dn := lim sup
x→∞

P(Sn+ Y > x)
P(X0 > x)

.

Since µ ∈ OS by Proposition 3.1, we see from Lemma 3.3 that d0 = 0. Choose {λn} ∈ Λ such that

dn = lim
k→∞

P(Sn+ Y > λk)
P(X0 > λk)

.

For s > 1 and n≥ 1, define

I1 :=

∫ (λk−s)+

−∞
P(Sn−1+ Y > λk − u)P(Xn ∈ du),

I2 :=

∫ s+

−∞
P(Xn > λk − u)P(Sn−1+ Y ∈ du),

and
I3 := P(Sn−1+ Y > s)P(Xn > λk − s).

Then we have P(Sn + Y > λk) =
∑3

j=1 I j . For any ε > 0, we can take sufficiently large s > 1 such
that

limsup
k→∞

I1

P(X0 > λk)

≤ (dn−1+ ε) limsup
k→∞

∫ (λk−s)+

−∞

P(X0 > λk − u)
P(X0 > λk)

P(Xn ∈ du), (5.9)

and

limsup
k→∞

I3

P(X0 > λk)

≤ (dn−1+ ε) lim
k→∞

P(Xn > λk − s)P(X0 > s)
P(X0 > λk)

. (5.10)
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By virtue of the dominated convergence theorem, we see that

limsup
k→∞

I2

P(X0 > λk)

=

∫ s+

−∞
m(u; {λk})P(Sn−1+ Y ∈ du)

≤
∫ ∞

−∞
m(u; {λk})P(Sn−1+ Y ∈ du)≤ I∗(ρ(n−1)∗ ∗µ2). (5.11)

Note that

lim sup
k→∞

P(X0+ Xn > λk)
P(X0 > λk)

≥ lim sup
k→∞

∫ (λk−s)+

−∞

P(X0 > λk − u)
P(X0 > λk)

P(Xn ∈ du)

+ lim
k→∞

P(Xn > λk − s)P(X0 > s)
P(X0 > λk)

+ lim inf
k→∞

∫ s+

−∞

P(Xn > λk − u)
P(X0 > λk)

P(X0 ∈ du). (5.12)

Thus we obtain from (5.9)-(5.12) that, for n≥ 1,

dn ≤ (dn−1+ ε) limsup
k→∞

P(X0+ Xn > λk)
P(X0 > λk)

+ I∗(ρ(n−1)∗ ∗µ2)

− (dn−1+ ε) lim inf
k→∞

∫ s+

−∞

P(Xn > λk − u)
P(X0 > λk)

P(X0 ∈ du)

≤ (dn−1+ ε)(d
∗−
∫ s+

−∞
m(u; {λk})ρ(du)) + I∗(ρ(n−1)∗ ∗µ2).

Letting s→∞ and ε→ 0, we have by Lemma 5.2 (ii)

dn ≤ dn−1(d
∗− I∗(ρ)) + I∗(ρ)n−1 I∗(µ2). (5.13)

Noting that d0 = 0, we see from (5.13) that

dn ≤ I∗(µ2)
n−1
∑

k=0

I∗(ρ)k(d∗− I∗(ρ))
n−1−k <∞. (5.14)

By Lemma 3.2 (iii), we have for x ≥ 0

P(Sn+ Y > x)
P(X0 > x)

≤
∫ ∞

−∞

P(Sn > x − u)
P(X0 > x)

P(Y ∈ du)

≤
∫ ∞

−∞
Kn P(X0 > x − u)

P(X0 > x)
P(Y ∈ du)
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= Kn P(S1+ Y > x)
P(X0 > x)

≤ Kn(d1+δ),

with some positive constants K and δ. Thus we can use Fatou’s lemma and establish from (5.14)
that

C∗ = limsup
x→∞

e−c0

∞
∑

n=1

cn−1
0

n!

P(Sn+ Y > x)
P(X0 > x)

≤ e−c0

∞
∑

n=1

cn−1
0

n!
dn

≤ e−c0

∞
∑

n=1

cn−1
0

n!
I∗(µ2)

n−1
∑

k=0

I∗(ρ)k(d∗− I∗(ρ))
n−1−k = J(µ).

We have proved the proposition. �

Proof of Theorem 2.1. Assertion (i) is due to Proposition 3.1. Assertion (ii) is due to Propositions
5.1-5.3. �

Proof of Corollary 2.1. We see from Theorem 2.1 (ii) that 0 ≤ γ∗ < ∞, bµ(γ∗) < ∞ and
C = C∗ = C∗ = bµ(γ∗). �

The following is due to Theorem 1 of [13] and Theorem 3.1 of [24], and conclusively to Theorem
1.1 of [31]. An interesting history of the establishment of this result is found in [31]. It has
an application to the local subexponentiality of an infinitely divisible distribution. See [32].
Applications of the class S (γ) to Lévy processes are found in [4; 6; 21].

Lemma 5.3. Let γ ≥ 0. Let µ be a distribution in ID+ with Lévy measure ν . Then the following are
equivalent:

(1) µ ∈ S (γ).
(2) ν(1) ∈ S (γ).
(3) ν(1) ∈ L (γ), bµ(γ)<∞, and µ̄(x)∼ bµ(γ)ν̄(x).
(4) ν(1) ∈ L (γ) and, for some C ∈ (0,∞), µ̄(x)∼ C ν̄(x).

Remark 5.2. Let γ≥ 0. We see from the above lemma that S (γ)∩ ID+ is closed under convolution
roots. The class S is closed under convolution roots. Refer to Theorem 2 of [13] in the one-sided
case and see Prposition 2.7 of [31] in the two-sided case. However, we do not know whether the
class S (γ) is closed under convolution roots for γ > 0, so far. We find from Theorem 2.1 of [32]
that S (γ) on R+ is closed under convolution roots for some (equivalently for all) γ > 0 if and only
if so is the locally subexponential class on R+.

Proof of Corollary 2.2. Let a ∈ R. Note that µ ∗ δ−a is also an infinitely divisible distribution on
R with the same Lévy measure as that of µ and that µ ∗δ−a(x) = µ(x + a). Hence we see from
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Corollary 2.1 that 0 ≤ γ∗ <∞, bµ(γ∗) <∞ and C(a j) = bµ(γ∗)exp(−γ∗a j) for j = 1,2. Define a set
E as E := {ma1+ na2 : m, n ∈ Z}. Then we have, for any a ∈ E,

µ(x + a)∼ exp(−γ∗a)µ(x). (5.15)

Note that E is a dense set in R because a1/a2 is irrational. Thus we have (5.15) for any a ∈ Ē = R. It
follws that µ ∈ L (γ∗) and µ(x)∼ bµ(γ∗)ν(x). Thus we conclude from Lemma 5.3 that µ ∈ S (γ∗). �

6 Proof of Theorem 2.2

Albin [1] asserted that if ν(1) ∈ L (γ), then µ ∈ L (γ). His proof in the case γ = 0 is complete.
However, his proof in the case γ > 0 depends on an incomplete lemma which is stated without
precise proof.

Assertion (Lemma 2.1 of [1]) Let ρ ∈ L (γ) be supported on [0,∞) for some γ≥ 0. Given constants
ε > 0 and t ∈ R, pick a constant x0 ∈ R such that

ρ(x − t)
ρ(x)

≤ (1+ ε)eγt for x ≥ x0. (6.1)

Then

ρn∗(x − t)

ρn∗(x)
≤ (1+ ε)eγt for x ≥ n(x0− t) + t. (6.2)

Remark 6.1. The assertion above is correct for γ = 0. But, we can make the following counterex-
ample of this assertion for γ > 0. Indeed, let ρ(x) :=

∫∞
x

e−udu. Then ρ ∈ L (1) and the condition

(6.1) is satisfied for x0 = 0. Notice that ρn∗(x) = ((n− 1)!)−1
∫∞

x
un−1e−udu. Let t < 0 and put

c := 1− t. We have

lim
n→∞

ρn∗(cn− t)

ρn∗(cn)
= lim

n→∞

∫∞
0
(cn− t + u)n−1e−(cn−t+u)du
∫∞

0
(cn+ u)n−1e−(cn+u)du

= et lim
n→∞

∫∞
0
(1+ −t+u

cn
)n−1e−udu

∫∞
0
(1+ u

cn
)n−1e−udu

= e−c−1 t · et .

Take ε satisfying 1 + ε < e−c−1 t . The inequality (6.2) does not hold for sufficiently large n. The
example for a general γ > 0 is analogous and is omitted.

Lemma 6.1. Let ρ and η be distributions on R. Let γ≥ 0.

(i) (Lemma 2.5 of [31]) If ρ,η ∈ L (γ), then ρ ∗ η ∈ L (γ). In particular, if ρ ∈ L (γ), then
ρn∗ ∈ L (γ) for all n≥ 1.
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(ii) (Lemma 1 of [5]) If ρ ∈ L (γ), then, for every a ∈ R, there is a positive constant M(a) which
depends only on a such that, for every x ∈ R and every n≥ 1,

ρn∗(x − a)≤ M(a)ρn∗(x). (6.3)

The following lemma is suggested by an argument in [5].

Lemma 6.2. Let γ ≥ 0, a ∈ R. Suppose that ρ ∈ L (γ). For any ε with 0 < ε < 1, there is b > 0
such that for all n≥ 1 and for all x ∈ R,

ρ(n+1)∗(x + a)≤ (1+ ε)e−γaρ(n+1)∗(x) +ρn∗(x + a− b), (6.4)

and
ρ(n+1)∗(x + a)≥ (1− ε)e−γa(ρ(n+1)∗(x)−ρn∗(x − b)). (6.5)

Proof. We have

ρ(n+1)∗(x) =

∫ (x−b)+

−∞
ρ(x − y)ρn∗(d y) +

∫ ∞

(x−b)+
ρ(x − y)ρn∗(d y)

= K1(x) + K2(x).

Let 0< ε < 1. Since ρ ∈ L (γ), it follows that

(1− ε)e−γa ≤
ρ(x − y + a)
ρ(x − y)

≤ (1+ ε)e−γa

for sufficiently large b > 0 and y ≤ x − b. Notice that

K1(x + a) =

∫ (x−b)+

−∞

ρ(x − y + a)
ρ(x − y)

ρ(x − y)ρn∗(d y).

Hence we obtain that, for sufficiently large b > 0,

(1− ε)e−γaK1(x)≤ K1(x + a)≤ (1+ ε)e−γaK1(x).

Here we have K1(x) ≤ ρ(n+1)∗(x) and K2(x) ≤ ρn∗(x − b). Hence we get (6.4). Furthermore, we
have

K1(x) = ρ(n+1)∗(x)− K2(x)≥ ρ(n+1)∗(x)−ρn∗(x − b).

Hence we get (6.5). �

Lemma 6.3. Let µ be a distribution in ID+ with Lévy measure ν . Let γ ≥ 0. Then µ ∈ L (γ) if and
only if µ1 ∈ L (γ).
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Proof. As in the proof of Theorem 1.1 of [31], we see from Lemma 2.5 of [24] that if µ ∈ L (γ),
then µ1 ∈ L (γ). Conversely, if µ1 ∈ L (γ), then we have µ ∈ L (γ) by Lemma 2.1 of [24]. �

Proposition 6.1. Let µ be a distribution in ID+ with Lévy measure ν . Let γ ≥ 0. If ν(1) ∈ L (γ), then
µt∗ ∈ L (γ) for all t > 0. In the converse direction, if µt∗ ∈ L (γ) for all t > 0 and ν(1) ∈ OS , then
ν(1) ∈ L (γ).

Proof. We prove the first assertion. Suppose that ν(1) ∈ L (γ). Without loss of generality, we
can assume that t = 1. Denote ρ := ν(1) and λn := e−c0 cn

0(n!)−1 with c0 := ν(1,∞). Note that
limn→∞λn+1/λn = 0. Let 0< ε < 1. Let N be a positive integer satisfying λn+1 ≤ ελn for all n≥ N .
Define

IN (x) :=
N
∑

n=1

λnρ
n∗(x) and JN (x) :=

∞
∑

n=N+1

λnρ
n∗(x).

Then µ1(x) = IN (x) + JN (x) for x > 0. Since ρ ∈ L (γ), we have by Lemma 6.1 (i)

(1− ε)e−γa IN (x)≤ IN (x + a)≤ (1+ ε)e−γa IN (x)

for sufficiently large x . We see from Lemma 6.2 that, for all x ∈ R,

JN (x + a)≤
∞
∑

n=N+1

λnρ
n∗(x)(1+ ε)e−γa +

∞
∑

n=N+1

λnρ
(n−1)∗(x + a− b).

By Lemma 6.1 (ii), we have

∞
∑

n=N+1

λnρ
(n−1)∗(x + a− b) =

∞
∑

n=N

λn+1ρ
n∗(x + a− b)

≤ εM(b− a)
∞
∑

n=N

λnρ
n∗(x).

Hence, for all x ∈ R,

JN (x + a)≤ (1+ ε)e−γaJN (x) + εM(b− a)µ1(x).

Furthermore, we obtain from Lemmas 6.1 (ii) and 6.2 that, for all x ∈ R,

JN (x + a) ≥ (1− ε)e−γa�
∞
∑

n=N+1

λnρ
n∗(x)−

∞
∑

n=N+1

λnρ
(n−1)∗(x − b)

	

≥ (1− ε)e−γa�
∞
∑

n=N+1

λnρ
n∗(x)− εM(b)

∞
∑

n=N

λnρ
n∗(x)

	

≥ (1− ε)e−γa(JN (x)− εM(b)µ1(x)).

In consequence, it follows that, for sufficiently large x ,

µ1(x + a) ≤ (1+ ε)e−γa IN (x) + (1+ ε)e
−γaJN (x) + εM(b− a)µ1(x)
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=
�

(1+ ε)e−γa + εM(b− a)
�

µ1(x),

and

µ1(x + a) ≥ (1− ε)e−γa IN (x) + (1− ε)e−γa(JN (x)− εM(b)µ1(x))

=
�

(1− ε)e−γa − εM(b)
�

µ1(x).

Thus we obtain that

(1− ε)e−γa − εM(b) ≤ lim inf
x→∞

µ1(x + a)
µ1(x)

≤ limsup
x→∞

µ1(x + a)
µ1(x)

≤ (1+ ε)e−γa + εM(b− a).

Letting ε→ 0, we can show µ1 ∈ L (γ). Hence we have µ ∈ L (γ) by Lemma 6.3.

Next we prove the second assertion. Suppose that µt∗ ∈ L (γ) for any t > 0 and ν(1) ∈ OS . We
obtain from Lemma 6.3 that µt∗

1 ∈ L (γ) for any t > 0. Define C∗(t) and C∗(t) for t > 0 as

C∗(t) := lim inf
r→∞

µt∗
1 (r)

tν(r)
,

and

C∗(t) := lim sup
r→∞

µt∗
1 (r)

tν(r)
.

Since µt∗
1 is one-sided, we find from Proposition 2 of [11] that 1≤ C∗(t). We see from Theorem 2.1

(ii) that C∗(t)≤ J(µt∗
1 ). Since I∗(δ0(d x)) = 1, we can represent J(µt∗

1 ), for B = 0, as

J(µt∗
1 ) = exp(c0 t(I∗(ν(1))− 1)),

and, for B > 0, as

J(µt∗
1 ) = exp(c0 t(I∗(ν(1))− 1))

exp(c0Bt)− 1

c0Bt
.

Thus we have limt→0 J(µt∗
1 ) = 1. Hence we obtain that

lim
t→0

C∗(t) = lim
t→0

C∗(t) = 1.

Thus we see that, for any a ∈ R,

e−γa = lim
t→0

lim inf
r→∞

µt∗
1 (r + a)

µt∗
1 (r)

= lim inf
r→∞

ν(r + a)
ν(r)

≤ limsup
r→∞

ν(r + a)
ν(r)

= lim
t→0

limsup
r→∞

µt∗
1 (r + a)

µt∗
1 (r)

= e−γa.

That is, ν(1) ∈ L (γ). �
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Now we prove Theorem 2.2. We can obtain the same upper bound of C∗ as in (2.3) again by using
Corollary 2.6 (ii) of [7].

Proof of Theorem 2.2. Note that γ∗ = γ. Assertion (i) is due to Proposition 6.1.

Next we prove (ii). Since ν(1) ∈ L (γ) ⊂ OL , we see that m(x; {λn}) = eγx for any {λn} ∈ Λ and
thereby obtain from Proposition 5.2 that

C∗ ≥ I∗(µ) = bµ(γ).

Hence we see from Lemma 5.1 (ii) that C∗ = bµ(γ) ∈ (0,∞].
Lastly, we prove assertions (1)-(3) in (ii). If d∗ = 2bν(1)(γ) < ∞, then ν(1) ∈ S (γ). It follows
from Lemma 5.3 that C∗ = C∗ = bµ(γ). Suppose that 2bν(1)(γ) < d∗ < ∞. Then ν(1) ∈ OS \S (γ).
We have C∗ ≥ bµ(γ) by Theorem 2.1. Next suppose that C∗ = bµ(γ). Since C∗ = bµ(γ), we have
µ(r) ∼ bµ(γ)ν(r). As we have ν(1) ∈ L (γ), we obtain from Lemma 5.3 that ν(1) ∈ S (γ). This is a
contradiction. Hence C∗ > bµ(γ). Since I∗(ν(1)) = I∗(ν(1)) = bν(1)(γ) and I∗(µ2) = bµ2(γ), we have
B = d∗− 2bν(1)(γ) and

J(µ) = bµ(γ)
exp(c0(d∗− 2bν(1)(γ)))− 1

c0(d∗− 2bν(1)(γ))
.

Thus we have (2.3) by (2.2). If d∗ = ∞, then ν(1) 6∈ OS . We see from Proposition 3.1 (ii) that
C∗ =∞. �

Remark 6.2. Let µ be a distribution in ID+ with Lévy measure ν . Suppose that ν(1) ∈ OS . Then
µ ∈ L if and only if ν(1) ∈ L .

Proof. Suppose that µ ∈ L and ν(1) ∈ OS . Let ρ := ν(1). Then we have µ1 ∈ L by Lemma 6.3.
Thus we see that

0= lim
r→∞

µ1(r)−µ1(r + 1)
µ1(r)

≥ e−c0 c0 lim sup
r→∞

ρ(r)−ρ(r + 1)
µ1(r)

≥ 0. (6.6)

Since ρ := ν(1) ∈ OS , we have ρ(r)� µ1(r) by Proposition 3.1. Hence we obtain from (6.6) that

lim
r→∞

ρ(r)−ρ(r + 1)
ρ(r)

= 0,

that is, ν(1) = ρ ∈ L . Conversely, we see from Proposition 6.1 that if ν(1) ∈ L , then µ ∈ L . �

7 Proof of Theorem 2.3.

Among the classes in Definitions 1.1 and 2.1, only the classes D andH are closed under convolution
and under convolution roots, simultaneously. The proof forH is easy and that for D is as follows.

Lemma 7.1. Let ρ and η be distributions on R.
(i) If ρ(r)� η(r) for some η ∈ D, then ρ ∈ D.
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(ii) If ρn∗ ∈ D for some n≥ 1, then ρ ∈ D.
(iii) If ρ,η ∈ D, then ρ ∗η ∈ D. In particular, if ρ ∈ D, then ρn∗ ∈ D for all n≥ 1.

Proof. Assertion (i) is obvious by the definition of the class D. For (ii), suppose that ρn∗ ∈ D. Since
ρn∗(r) � (ρ+)n∗(r), we have (ρ+)n∗ ∈ D and, by Proposition 1.1 (iii) of [27], ρ+ ∈ D and hence
ρ ∈ D. If ρ,η ∈ D ⊂ OS , then ρ+,η+ ∈ D ⊂ OS and (3.2) holds. Thus we see from Proposition
2.3 (ii) of [27] that ρ+ ∗ η+ ∈ D and thus from (3.2) and (i) that ρ ∗ η ∈ D. The second assertion
of (iii) is obvious. �

Lemma 7.2. Let ρ be a distribution on R.
(i) If ρ ∈ D, then, for all n≥ 1 and a ≥ 0,

limsup
r→∞

ρn∗(r − a)
ρ(r)

≤ n · lim
N→∞

limsup
r→∞

ρ(r − N)
ρ(r)

. (7.1)

(ii) If ρ ∈ D, then there are two positive constants c1 and c2 such that, for all n≥ 1 and r > 0,

ρn∗(r)
ρ(r)

≤ c1 · nc2+1. (7.2)

Proof. First we prove (i). Let {X j}∞j=1 be i.i.d. random variables with a common distribution ρ. Let
r > a+ (n− 1)N1 with N1 > 0. We have

ρn∗(r − a)

= P







n
∑

j=1

X j > r − a, X j0 > n−1(r − a) for some j0 with 1≤ j0 ≤ n







≤
n
∑

j0=1

P







n
∑

j=1

X j > r − a, X j0 > n−1(r − a), X i ≤ N1 for any i 6= j0







+
n
∑

j0=1

P







n
∑

j=1

X j > r − a, X j0 > n−1(r − a), X i > N1 for some i 6= j0







≤ nρ(r − a− (n− 1)N1) + n(n− 1)ρ(N1)ρ(n
−1(r − a)). (7.3)

Here, if ρ ∈ D, then there are two positive constants c1 and c2 such that, for any n≥ 1 and r > 0,

ρ(n−1r)
ρ(r)

≤ c1nc2 . (7.4)

Thus we see from (7.3) and (7.4) that if ρ ∈ D, then

lim sup
r→∞

ρn∗(r − a)
ρ(r)

≤ lim
N1→∞

limsup
r→∞

nρ(r − a− (n− 1)N1)
ρ(r)

= n · lim
N→∞

limsup
r→∞

ρ(r − N)
ρ(r)

.
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As we have

ρn∗(r) = P







n
∑

j=1

X j > r






≤

n
∑

j=1

P(X j > n−1r) = nρ(n−1r),

it follows from (7.4) that (ii) holds. �

Lemma 7.3. Let µ be a distribution in ID+ with Lévy measure ν .

(i) If ν(1) ∈ D, then 0<Q∗ ≤ 1≤Q∗ <∞.

(ii) If ν(1) ∈ D and µ is a compound Poisson distribution on R+, then

C∗ ≤ lim
N→∞

limsup
r→∞

µ(r − N)
ν(r)

≤Q∗. (7.5)

Proof. We prove (i). Suppose that ν(1) ∈ D. Then we have

1≥Q∗ ≥ lim inf
r→∞

ν(2r)
ν(r)

> 0,

and

1≤Q∗ = (Q∗)
−1 <∞.

Next we prove (ii). Let r > 0. Notice that µ(r) = e−a
∑∞

n=1 an(n!)−1ρn∗(r), where a := ν(R+) =
ν(0) and ρ := a−1ν . Suppose that ν(1) ∈ D. Let N1 > 0. Now we can use Fatou’s lemma by virtue of
Lemma 7.2 (ii). Thus we see from Lemma 7.2 (i) that

C∗ ≤ limsup
r→∞

µ(r − N1)
ν(r)

≤ e−a
∞
∑

n=1

an

n!
lim sup

r→∞

ρn∗(r − N1)
aρ(r)

≤Q∗.

As N1→∞, we get (7.5). �

Now we prove Theorem 2.3.

Proof of Theorem 2.3. We prove (i). If ν(1) ∈ D ⊂ OS , we see from Theorem 2.1 and Lemma 7.1 (i)
that µ(r) � ν(r) and µ ∈ D. Conversely, suppose that µ ∈ D ⊂ OS . Then we see from Proposition
3.1 (iii) that (ν(1))k∗ ∈ OS for some k ≥ 1 and µ(r) � (ν(1))k∗(r). It follows from Lemma 7.1 that
(ν(1))k∗ ∈ D and ν(1) ∈ D.

We show (ii). Let Y1 and Y2 be independent random variables with distribution µ1 and µ2, respec-
tively. Suppose that ν(1) ∈ D. It follows from Lemma 7.3 (i) that 0 < Q∗ ≤ 1 ≤ Q∗ < ∞. Since
D ⊂H , we see from Proposition 4.1 that C∗ ≤ 1≤ C∗. Let r > 2N > 0. Then we have

µ(r) = P(Y1+ Y2 > r)≤
3
∑

k=1

Jk,
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where J1 = P(Y1 + Y2 > r, |Y2| ≤ N), J2 = P(Y1 + Y2 > r, |Y1| ≤ N), and J3 = P(Y1 + Y2 > r, |Y1| >
N , |Y2|> N). Now we see from Lemma 7.3 (ii) that

lim
N→∞

lim sup
r→∞

J1

ν(r)
≤ lim

N→∞
lim sup

r→∞

P(Y1 > r − N)
ν(r)

≤Q∗.

Since ν(1) ∈ D ⊂ OS ⊂ OL , we see from Proposition 3.1 and Lemma 3.3 that

lim sup
r→∞

J2

ν(r)
≤ lim sup

r→∞

P(Y2 > r − N)
µ1(r − N)

µ1(r − N)
ν(r − N)

ν(r − N)
ν(r)

= 0.

Using Lemma 7.3 (ii) again, we obtain that

lim
N→∞

lim sup
r→∞

J3

ν(r)

≤ lim
N→∞

lim sup
r→∞

�

P(Y1 > 2−1r)
ν(2−1r)

ν(2−1r)
ν(r)

P(|Y2|> N)

+
P(Y2 > 2−1r)
µ1(2−1r)

µ1(2−1r)
ν(2−1r)

ν(2−1r)
ν(r)

P(|Y1|> N)
�

= 0.

Consequently, we have obtained (2.5). We have, for {λn} ∈ Λ, Q∗ ≤ m(x; {λn}) for x < 0 and
1≤ m(x; {λn}) for x ≥ 0. Thus we obtain from Theorem 2.1 (ii) that

C∗ ≥ I∗(µ)≥ µ[0,∞) +Q∗µ(−∞, 0) = 1− (1−Q∗)µ(−∞, 0).

Thus we have got (2.4). �

As is mentioned in Section 2, Denisov et al. [9] proved that if µ is a distribution on R+ inH ∩ ID+,
then C∗ = 1. We show in the following example that there exists µ ∈H ∩ ID+ such that C∗ < 1.

Example 7.1. Let ρ be the Peter and Paul distribution, that is,

ρ(d x) :=
∞
∑

n=1

2−nδ2n(d x).

Let 0 < λ < 1. Let µ1 be a compound Poisson distribution with Lévy measure λρ. Let µ2 be a
continuous infinitely divisible distribution on (−∞, 0]. Define µ ∈ ID+ as µ = µ1 ∗ µ2. Then we
have µ ∈ D and Q∗ = 2. Moreover, we can take λ sufficiently small such that Q∗ < C∗ < 1< C∗ <Q∗.

Proof. Since ν(1) = ρ ∈ D, we have µ ∈ D by Theorem 2.3 and, obviously, Q∗ = 2. Note that µ is
continuous, because µ2 is so. Thus we can take a positive sequence {εn}∞n=1 such that limn→∞ εn = 0
and

lim
n→∞

µ̄(2n− εn)
µ̄(2n)

= 1.

Hence we have

C∗ ≤ lim inf
n→∞

µ̄(2n− εn)
λρ̄(2n− εn)
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≤ lim
n→∞

ρ̄(2n)
ρ̄(2n− εn)

lim sup
n→∞

µ̄(2n)
λρ̄(2n)

≤ 2−1C∗. (7.6)

Let {λn} ∈ Λ. Note that m(x; {λn}) and I∗(µ2) do not depend on the value of λ. Since m(x; {λn})≤
1 for x ≤ 0, we see that I∗(µ2)≤ 1. Thus we have, for B = 0,

lim
λ→0

J(µ) = lim
λ→0

I∗(µ2)exp(λ(I∗(ρ)− 1)) = I∗(µ2)≤ 1,

and, for B > 0,

lim
λ→0

J(µ) = lim
λ→0

I∗(µ2)exp(λ(I∗(ρ)− 1))
exp(λB)− 1

λB
= I∗(µ2)≤ 1.

Hence we obtain from Theorem 2.1 (ii) that

1≤ lim
λ→0

C∗ ≤ lim
λ→0

J(µ) = I∗(µ2)≤ 1,

that is, I∗(µ2) = 1 and limλ→0 C∗ = 1. Thus we conclude from (7.6) and Theorem 2.3 (ii) that, for
sufficiently small λ > 0,

2−1 < 1− 2−1µ(−∞, 0)≤ C∗ ≤ 2−1C∗ < 1< 2C∗ ≤ C∗ < 2.

We have proved all the assertion. �
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