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Abstract

Competing particle systems are point processes on the real line whose configurations X can

be ordered decreasingly and evolve by increments which are functions of correlated Gaussian

variables. The correlations are intrinsic to the points and quantified by a matrix Q = {qi j}. Quasi-

stationary systems are those for which the law of (X ,Q) is invariant under the evolution up to

translation of X . It was conjectured by Aizenman and co-authors that the matrix Q of robustly

quasi-stationary systems must exhibit a hierarchical structure. This was established recently,

up to a natural decomposition of the system, whenever the set SQ of values assumed by qi j is

finite. In this paper, we study the general case where SQ may be infinite. Using the past incre-

ments of the evolution, we show that the law of robustly quasi-stationary systems must obey the

Ghirlanda-Guerra identities, which first appear in the study of spin glass models. This provides

strong evidence that the above conjecture also holds in the general case. In addition, it yields an

alternative proof of a theorem of Ruzmaikina and Aizenman for independent increments.
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1 Introduction

1.1 Background

Competing particle systems are point processes X = {X i} on R whose configurations can be ordered

in decreasing order X1 ≥ X2 ≥ .... We study a dynamics of X where the particles compete in the

sense that, at each time step, the positions are evolved by increments whose correlations depend on

intrinsic characteristics of the points. Precisely, we assign to each X a covariance or overlap matrix

Q = {qi j}. The overlap qi j quantifies the similarity between the i-th point and the j-th point. We set

the overlap to 1 when the particles are identical i.e. qii = 1 for all i. As Q is a covariance matrix, it

follows that |qi j| ≤ 1. The overlaps are not affected by the dynamics and are simply permuted under

evolution. Precisely, let ψ be some real function, the dynamics is (X ,Q) 7→ (eX , eQ) with

eX i = Xπ(i)+ψ(κπ(i))

eqi j = qπ(i)π( j) , (1)

where π is a permutation of N which reorders eX i and κ is a Gaussian field independent of X with

covariance given by an entry-wise power of Q.

The question of interest is to characterize the distributions on the pair (X ,Q) which are quasi-

stationary in the sense that the joint law of the gaps of X and Q is invariant under the stochastic

evolution (1) (see also [7] and [12] for related setups). The uncorrelated case where Q is the

identity was handled by Ruzmaikina and Aizenman in [14]. Under mild assumptions on X , it was

shown that quasi-stationarity implies that the statistics of the gaps are those of a Poisson process on

R with exponential density. The correlated case was first studied in [3]. It was proven that, under

some robustness conditions on the quasi-stationary property and up to a natural decomposition

of the system, Q must exhibit a hierarchical structure whenever the state space of the overlaps

was finite i.e. the possible values taken by qi j . The aim of this paper is to provide evidence that

the hierarchical structure is also necessary for quasi-stationarity to hold when the state space is

infinite (see also [11] for recent progress in this direction). Namely, we establish that Q must

satisfy constraining identities which are consistent with the hierarchical structure. These identities

are known as the Ghirlanda-Guerra identities in statistical mechanics [9]. In fact, the original

motivation of competing particle systems is to have a simple model to study the purported rich

structure of the Gibbs states of spin glasses (see [2] for the connection between the two). In this

regard our result provides a hint that the reason behind the hierarchical structure is the stationarity

under a competing dynamics.

For our purpose, we can assume that the process X has infinitely many particles a.s. because no

finite systems of more than one particle can be quasi-stationary due to the spreading of the gaps

under evolution [14]. As in [3], we restrict ourselves to X for which there exists β > 0 such that∑
i eβX i <∞ a.s. In this case, one can see (X ,Q) as a Random Overlap Structure or ROSt (ξ,Q) by

mapping X to the exponentials of the position:

ξi =
eβX i

∑
i eβX i

. (2)

Definition 1.1. A ROSt is a random variable on the space Ωos := Pm ×Q where Pm is the space of

sequences (ξi, i ∈ N) such that ξ1 ≥ ξ2 ≥ ... ≥ 0 with 0 <
∑

i ξi < 1 and Q is the space of positive

semi-definite symmetric matrices with 1 on the diagonal.
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We chose to exclude in the definition the cases where
∑

i ξi = 0 and
∑

i ξi = 1. The latter corre-

sponds to the system with only one particle (trivially quasi-stationary). The weights of the former

are all 0, hence this is the case of no particles. From the ROSt perspective, we can assume that Q

is supported on positive definite matrices, i.e. that |qi j| < 1. Indeed, if qi j = 1, particles i and j

must have the same overlap with any other particles, since Q is a Gram matrix. We can then identify

the two particles and sum their weight. The case qi j = −1 is trickier and can be ruled out in most

cases from quasi-stationarity considerations (see Section 2.3). From (2), we see that the competitive

evolution (1) becomes

(ξ,Q) 7→ Φψ(κ)(ξ,Q) :=




 
ξie
ψ(κi)

∑
j ξ je

ψ(κ j)
, i ∈ N

!

↓

,π ◦Q ◦π−1


 . (3)

Again, π is the reshuffling induced by the mapping and the symbol ↓ means that the weights are

reordered in decreasing order after evolution. The evolved weights are normalized to sum up to

1. For simplicity, we will sometimes drop the dependence on ψ and write Φr for the mapping (3)

where κ has covariance Q∗r , the r-th entry-wise power of Q. Since the normalized weights depend

only on the gaps of X , quasi-stationarity of (X ,Q) under (1) translates into the invariance of the law

of (ξ,Q) under Φr .

Definition 1.2. Fix ψ : R→ R. A ROSt (ξ,Q) is quasi-stationary under Φr if

Φr(ξ,Q)
D
= (ξ,Q)

where the symbol
D
= means equality in distribution. It is said to be robustly quasi-stationary if it is

quasi-stationary under Φr for infinitely many r ∈ N.

A quasi-stationary ROSt is said to be ergodic if the only functions f : Ωos → Ωos satisfying

Er

�
f
�
Φr(ξ,Q)

� ¯̄
ξ,Q

�
= f (ξ,Q) a.s. are the constants.

A sufficient condition for the evolution (3) to be non-singular and for Φr(ξ,Q) to be a ROSt is the

finiteness of the expectation of eψ(κ). Throughout this paper, ψ will be fixed and assumed to belong

to the following class of functions which ensures this condition. This class also allows a good control

on the evolution.

Assumptions 1.3. The function ψ : R → R is in C2(R) with bounded derivatives. Furthermore, for

Y a standard Gaussian variable, the law of ψ(Y ) is absolutely continuous with respect to the Lebesgue

measure.

1.2 Main Results

The only known examples of quasi-stationary ROSt’s for all ψ satisfying Assumption 1.3 are given

by the so-called Ruelle Probability Cascades or RPC’s [13; 6; 2]. The RPC’s are constructed from

Poisson-Dirichlet variables and the Bolthausen-Sznitman coalescent. This coalescent is a Markov

process Γ = (∼t , t ≥ 0) on the space of equivalence relations on N for which i ∼t j implies i ∼s j

for all s ≥ t. For more on these processes, the reader is referred to [5; 6].
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Definition 1.4. Let x : q 7→ x(q) be a distribution function on [0,1] with x(1−) 6= 1. A RPC with

parameter x is the ROSt (ξ,Q) where ξ is a Poisson-Dirichlet variable PD(x(1−), 0) and Q is as follows.

Let Γ be a Bolthausen-Sznitman coalescent independent of ξ. Then

qi j = x−1(e−τi j )

where τi j := min{t : i ∼t j} and x−1 is the right-continuous inverse of x. In particular, P(qi j ≤ q) =

x(q) for all i 6= j.

It was conjectured by Aizenman et al that the RPC’s were the only ROSt’s that are quasi-stationary

in a "robust" sense, where the notion of robustness was to still be determined [2]. The striking

point of the conjecture, if proven true, is the necessity of hierarchical correlations for stability under

competitive evolution. Indeed, the RPC inherits a hierarchical structure from the coalescent:

(qi j ≥ q and q jk ≥ q) =⇒ qik ≥ q . (4)

A proof of a version of the conjecture was given in [3] for systems with finite state-space i.e. for

which the random set SQ := {qi j : 1 ≤ i < j < ∞} is finite a.s. Such systems can be decomposed

into subsystems called Q-factors for which the sets SQ(i) := {qi j : j 6= i} are identical for each i.

It was proven that if (ξ,Q) is robustly quasi-stationary and ergodic for all multiples of a smooth

function ψ, then each of its Q-factors is a RPC. Our first result is to show that the decomposition

into Q-factors is not necessary whenever quasi-stationarity is assumed under ψ(βκ+h) for all r ∈ N
provided ψ′(h) 6= 0.

Theorem 1.5. Let h ∈ R be such that ψ′(h) 6= 0. If a ROSt with finite state space is quasi-stationary

and ergodic under Φr with function ψ(βκ+ h) for all β in a neighborhood of 0 and for all r ∈ N, then

it is a RPC. In particular, Q satisfies (4) almost surely.

In the general case where SQ may be infinite, it was shown in [3] that:

Theorem 1.6 (Theorem 4.2 in [3]). Let (ξ,Q) be a ROSt that is robustly quasi-stationary and ergodic

for some function ψ satisfying Assumption 1.3. The following hold:

1. ξ is a Poisson-Dirichlet variable independent of Q;

2. Q is directed by a random probability measure µ on a Hilbert spaceH :

for i 6= j, qi j = (φi,φ j) where (φi, i ∈ N) are iid µ-distributed.

In the case of finite state space, the directing measure is discrete. It is then possible to carry an

induction argument on the cardinality of the state space to prove that the directing measure is again

a cascade. In the present paper, we provide strong identities that must be generally satisfied by the

directing measure of a quasi-stationary ROSt. Our main result is:

Theorem 1.7. Let h ∈ R be such that ψ′(h) 6= 0. If a ROSt is quasi-stationary and ergodic under Φr

with function ψ(βκ+ h) for all β in a neighborhood of 0 and for every r ∈ N, then for every s ∈ N its

directing measure µ satisfies

E

�
µ⊗s
�

qs,s+1 ∈ A|Fs

��
=

1

s
E

�
µ⊗2

�
q12 ∈ A

��
+

1

s

s−1∑

l=1

χA(qls) (5)

where µ⊗s denotes the product measure of µ, χA is the indicator function of the set A⊆ [−1,1] and Fs

is the σ-field generated by the Gram matrix of s vectors.
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More generally, we obtain an identity for the r-th moment whenever (ξ,Q) is invariant under Φr .

When ψ is linear, quasi-stationarity for β in an open interval is sufficient for the identities to be

valid. In fact, the assumption that 0 is in the interval is only needed to reduce the general case

to the linear one. The identities (5) are known as the Ghirlanda-Guerra identities in the study of

spin glass models [9; 8]. It is a non-trivial fact that they arise in the general setting of competing

particle systems. They are satisfied by the RPC’s and hence consistent with hierarchical overlaps.

The Ghirlanda-Guerra identities have a simple interpretation: conditionally on the inner product of

s vectors q12 ... qs−1,s, the inner product of an additional vector drawn under µ with a previous one

is independent of the given frame with probability 1/s or takes the value qls, 1 ≤ l ≤ s − 1, each

with probability 1/s.

The main concept used to derive Theorems 1.7 and 1.5 is the so-called past velocity. Precisely, in

Section 2, we consider independent time-steps of the evolution Φr keeping track of the past time-

steps. The past velocity is simply defined as the time-average of the past increments. It is shown to

exist and to be common to all particles whenever the system is quasi-stationary. Similarly as in [3],

the study of the evolution for a generic ψ can be reduced to a linear ψ by a Central Limit Theorem

argument as explained in Appendix B. It turns out that the collection of velocities obtained from

the different linear evolutions single out the parameter of the RPC thereby yielding Theorem 1.5.

In Section 3, we used the fact that the velocity is common (and deterministic for ergodic systems)

to conclude that the distribution of Q satisfies the Ghirlanda-Guerra identities. The argument is

very similar to the proof of these identities for spin glass models in the sense that the common

velocity plays the role of the self-averaging of internal energy. A straightforward consequence of

the result (see Corollary 3.4) is an alternative proof, although under more restrictive assumptions,

of the Ruzmaikina-Aizenman theorem [14; 4]. Along the way we also prove that quasi-stationary

ROSt’s obey the so-called Aizenman-Contucci identities, which can be seen as a weaker version of

the Ghirlanda-Guerra identities [1].

2 The Past Velocity

2.1 Definition

The past velocity naturally appears when re-expressing the evolution (3) as a deterministic mapping

on a space that includes the past and future increments of the evolution.

Let νQ∗r be the law of the Gaussian field κ with covariance Q∗r and P the law of some ROSt. We

consider Pr the probability measure on Ωos ×
∏∞

t=0R
N consisting of P, coupled through Q, with

independent copies of the field:

dPr = dP(ξ,Q)×
∏

t≥0

dνQ∗r (κ(t)). (6)

Clearly, the future increments (κ(t), t ≥ 0) are exchangeable given (ξ,Q) as they are simply iid.

We are interested in extending the probability measure Pr in a consistent way to include the past

increments (κ(t), t < 0) and thus get a probability measure on

Ω := Ωos ×
∏

t∈Z
R
N.
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The relevant dynamics on the space Ω is the evolution (3) on (ξ,Q) together with a time-shift of the

fields. We stress that the field κ must also be reindexed after evolution.

Definition 2.1. Let Φψ(·) be of the form (3). We define the mapping Λ : Ω→ Ω

Λ(ω) = Λ(ξ,Q, (κ(t), t ∈ Z)) :=
�
Φψ(κ(0))(ξ,Q), (κ↓(t + 1), t ∈ Z)

�

where ↓ stands for the reindexing of the Gaussian field with respect to the ordering of the points after

evolution by Φψ(κ(0)).

It is shown in Appendix A that the extension of Pr toΩ exists whenever the system is quasi-stationary.

Furthermore, similarly as for the future increments, the sequence of past increments is exchangeable

conditionally on (ξ,Q).

Lemma 2.2 (Appendix A). Let (ξ,Q) be a quasi-stationary ROSt under Φr for some r ∈ N. There

exists a unique Λ-invariant probability measure on Ω whose restriction on Ωos is the law of (ξ,Q). This

measure is ergodic under Λ if and only if (ξ,Q) is ergodic.

Moreover, the sequence of past increments (κ(t), t < 0) is exchangeable under this probability measure

conditionally on (ξ,Q).

The reader would notice that the constructed measure on Ω now explicitly depends on the function

ψ. However, we will usually omit this dependence in the notation and simply write Pr for the

extension of (6) to Ω.

Definition 2.3. The past velocity of the i-th point is the time-average of its past increments i.e. for

ω ∈ Ω

vi(ω) := lim
T→∞

1

T

T∑

t=1

ψ(κi(−t)). (7)

It is important to bear in mind that the velocity is in essence very different from the time-average

of the future increments due to the reordering. Indeed, the i-th point moved in front of all but

i − 1 points during the course of the competitive evolution. Thus its past increments are by na-

ture atypical. The existence of the limit (7) is a simple consequence of the exchangeability of the

increments.

Proposition 2.4. Let (ξ,Q) be a quasi-stationary ROSt under Φr for some r ∈ N. For all i ∈ N, the

limit vi(ω) exists Pr -a.s. and vi(ω) ∈ Lp(Pr) for any 1≤ p <∞.

Moreover, the velocity is an intrinsic quantity of a particle in the sense that

vi(ω) = vπ(i)(Λω) (8)

where π is the permutation induced by the evolution ω 7→ Λω.

Proof. By de Finetti’s theorem and the exchangeability of the past increments asserted in Lemma

2.2, the fields (κ(t), t < 0) are iid given (ξ,Q) and α, the empirical distribution of (κ(t), t < 0).

On the other hand, it is proven in Lemma A.2 of Appendix A that Er

�
|ψ(κi(−1))|

¯̄
ξ,Q,α

�
< ∞

a.s. Thus the first claim follows by the law of large numbers. Second, by a combination of Jensen’s

inequality, Fatou’s lemma and exchangeability, we have

Er[ |vi(ω)|p ]≤ Er

�
|ψ(κi(−1))|p

�
.

which is also finite by the proof of Lemma A.2. The equality (8) is clear as the past velocity depends

only on increments in the distant past.
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2.2 The velocity is common

We now make rigorous the intuitive idea that the points must share a common velocity for the

system to be stable. In this section, we write Pr,λ for the probability on Ω constructed from a ROSt

that is quasi-stationary under Φr with function λψ.

Proposition 2.5. If (ξ,Q) is a quasi-stationary ROSt under Φr for all functions λψ, λ in some open

set of R. Then vi(ω)≡ v(ω) for all i ∈ N Pr,λ-a.s.

If it is ergodic, then the past velocity is deterministic and

v(ω) = Er,λ



∑

i

ξi ψ(κi(−1))


 Pr,λ-a.s..

Before proving the proposition, we need to introduce the generating function of the cumulants of

the past increments. Let (ξ,Q) be a ROSt. For λ ∈ R, we set

Pr(λ) := Er


log

∑

i

ξie
λψ(κi(0))


 . (9)

Pr(λ) is well-defined in the case ψ satisfies Assumption 1.3 since by Jensen’s inequality

0≤Pr(λ)≤ log

∫

R

e−z2/2

p
2π

eλψ(z)dz .

In the case where (ξ,Q) is quasi-stationary, it holds for all T ∈ N that

Pr(λ) =
1

T
Er


log

∑

i

ξie
λ
∑T−1

t=0 ψ(κi(t))


 . (10)

Indeed we write the right-hand side as a telescopic sum

Er


log

∑

i

ξie
λ
∑T−1

t=0 ψ(κi(t))


 =

T−1∑

t ′=1

Er,λ


log

∑
i ξie

λ
∑t′

t=0ψ(κi(t))

∑
i ξie

λ
∑t′−1

t=0 ψ(κi(t))


+Pr(λ)

and all the terms in the sum equals Pr(λ) by stationarity.

The function Pr(λ) is a good tool to compare the past increments of a point i with the ξ-averaged

increment of the crowd, as the next lemma shows.

Lemma 2.6. Let (ξ,Q) be a quasi-stationary ROSt under Φr with function λψ for every λ in some open

set of R. Define Si(T ;ω) := 1

T

∑T

t=1ψ(κi(−t)) and 〈S(T )〉ω :=
∑

i ξi Si(T ;ω). Then for all T ∈ N
and λ in the open set

d

dλ
Pr(λ) = Er,λ

�
〈S(T )〉ω

�
= Er,λ



∑

i

ξi ψ(κi(−1))



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and

1

T

d2

dλ2
Pr(λ) = Er,λ



∑

i

ξi |Si(T ;ω)− 〈S(T )〉ω|2

 .

In particular,

lim
T→∞
Er,λ



∑

i

ξi |Si(T ;ω)− 〈S(T )〉ω|2

= 0 . (11)

Proof. We differentiate the right-hand side of (10) to get

Er




∑
i ξie

λ
∑T−1

t=0 ψ(κi(t)) 1

T

∑T−1

t=0 ψ(κi(t))
∑

i ξie
λ
∑T−1

t=0 ψ(κi(t))




which is simply Er,λ

�
〈S(T )〉ω

�
by quasi-stationarity. The expressions for d

dλ
Pr(λ) then follows from

(10) and exchangeability of the past increment. The second derivative is handled the same way. The

condition that quasi-stationarity holds in an open set guarantees that the derivatives of the identity

(10) also correspond (this would not be generally true if the identity were to hold for a single λ).

The limit T →∞ follows from the fact that Pr(λ) has a finite second derivative.

Proof of Proposition 2.5. We claim that there exists a sequence Tn ∈ N such that for all i ∈ N as

n→∞ ¯̄
Si(Tn;ω)− 〈S(Tn)〉ω

¯̄
→ 0 Pr,λ-a.s. (12)

Indeed, it follows from equation (11) of Lemma 2.6 that as T →∞
∑

i

ξi |Si(T ;ω)− 〈S(T )〉ω|2→ 0 in L1(Pr,λ) .

This ensures the existence of the subsequence for which the convergence (12) holds Pr,λ-a.s. for all

i ∈ N. On this subsequence, we also have that Si(Tn;ω)→ vi(ω) a.s. for every i ∈ N by Proposition

2.4. We conclude that vi(ω) = limn→∞〈S(Tn)〉ω a.s. The first part of the proposition is proven.

As the past velocity is common, the following equality holds by equation (8)

v(ω) =
1

T

T−1∑

t=0

v(Λtω) .

We now take the limit T → ∞. Birkhoff’s ergodic theorem can be applied as v(ω) ∈ L1(Pr,λ).

Indeed,

Er,λ[|v(ω)|] = Er,λ

�
lim

n→∞
|〈S(Tn)〉ω|

�
≤ Er,λ



∑

i

ξi |ψ(κi(−1))|



where we used Fatou’s lemma and exchangeability. The right-hand side is finite by the proof of

Lemma A.2. Therefore we have v(ω) = Er[v(ω)] Pr,λ-a.s. whenever (ξ,Q) is ergodic. In particular,

by dominated convergence and Lemma 2.6

Er,λ[v(ω)] = Er,λ

�
lim

n→∞
〈S(Tn)〉ω

�
= Er,λ



∑

i

ξi ψ(κi(−1))


 .
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2.3 Velocity and Decomposability

The velocity and the generating function Pr(λ) take a simple form when the evolution Φr is gov-

erned by a linear function.

Lemma 2.7. Let (ξ,Q) be a quasi-stationary ROSt under the evolution Φr for all linear functions

ψ(κ) = λκ, λ in some open set of R. One has

Pr(λ) =
λ2

2

∫ 1

−1

(1− qr) d x(q) (13)

where x(q) is the ξ-sampled distribution function E
h∑

i, j ξiξ j χ{qi j≤q}
i

.

In particular, if (ξ,Q) is ergodic

v(ω) = λ

∫ 1

−1

(1− qr) d x(q) Pr,λ-a.s. (14)

Proof. We take the derivatives of (9) using the Gaussian differentiation formula (see e.g. Appendix

A in [2])

d

dλ
Pr(λ) = λ

 
1−Er



∑

i, j ξiξ je
λκi(0)eλκ j(0) qr

i j∑
i, j ξiξ je

λκi(0)eλκ j(0)



!

.

As the ROSt is quasi-stationary, the right-hand side simply becomes

λ


1−E



∑

i, j

ξiξ j qr
i j





 = λ

∫ 1

−1

(1− qr) d x(q) .

Integration over λ yields the first assertion. The second is obtained from Lemma 2.6 and Proposition

2.5.

The above lemma rules out pairs of particles with qi j = −1 for ergodic ROSt’s. Indeed, qi j = −1

implies vi(ω) = −v j(ω). Since the velocity is common, we would have vi(ω) = 0. This leads to a

contradiction, since by (14) it would mean that Er[
∑

i, j ξiξ jq
r
i j] = 1 thus that the overlaps must be

one for all particles. In addition, we remark that the full collection of velocities of the evolutions

Φr , r ∈ N, singles out the probability measure d x(q) because it determines all the moments. This

simple observation is applied to prove Theorem 1.5.

Proof of Theorem 1.5. By Lemma B.1 proven in Appendix B, if (ξ,Q) is quasi-stationary for the func-

tions ψ(βκ + h) for all β in a neighborhood of 0, then it must be quasi-stationary for the linear

functions. In particular, we can conclude from Theorem 4.4 in [3] that the Q-factors of (ξ,Q) must

be RPC’s. On the other hand, the velocities of each point must be common and deterministic by

Proposition 2.5. In particular, the velocities of each Q-factor must correspond for every evolution

Φr . We deduce that the measure d x(q) of each Q factor is the same since the collection of ve-

locities determines the moments by equation (14). Recall from Definition 1.4 that the parameter

x(q) characterizes the law of a RPC. We conclude that (ξ,Q) has only one Q-factor and the claim

follows.
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3 The Distributional Identities

We present the proof of Theorem 1.7 in this section. In essence, the Ghirlanda-Guerra identities

follow from the fact that the velocity is common to all particles and deterministic when the system

is ergodic under the considered evolutions. This property can be seen as the equivalent of the

self-averaging of the internal energy for spin glass models. As a first step, we remark that quasi-

stationary systems satisfy the weaker Aizenman-Contucci identities which were derived prior to the

Ghirlanda-Guerra identities for spin glasses [1].

3.1 The Aizenman-Contucci identities

It is convenient to introduce a notation for the ξ-sampled measure on overlaps. Namely, let Fs(q) be

a bounded measurable function on the overlaps of s points, we write

E
(s)[Fs(q)] := E



∑

i1,...,is

ξi1
...ξis

Fs({qil ,il′
}l<l ′)


 .

Plainly, such expectation is invariant under evolution for quasi-stationary ROSt’s: e.g. for linear ψ

E



∑

i1,...,is
ξi1

eλκi1 ...ξis
eλκis Fs(q)

∑
i1,...,is

ξi1
eλκi1 ...ξis

eλκis


= E(s)[Fs(q)]. (15)

In particular, the right-hand side of the above equation does not depend on λ. This simple fact yields

moment relations for quasi-stationary ROSt’s.

Proposition 3.1. Let h ∈ R be such that ψ′(h) 6= 0. If (ξ,Q) is a quasi-stationary ROSt under Φr with

function ψ(βκ+ h) for all β in a neighborhood of 0, then for any s ∈ N, its law satisfies

s− 1

2
E
(2)
�

qr
12Fs(q)

�
= s E(s+1)

h
qr

s,s+1Fs(q)
i
−

s+ 1

2
E
(s+2)

h
qr

s+1,s+2Fs(q)
i

Proof. By Lemma B.1, (ξ,Q) is quasi-stationary under Φr for all linear functions λκ in an interval

containing 0. Therefore, equation (15) holds for these λ. Straightforward Gaussian differentiation

with respect to λ on both sides of (15) yields the desired relation.

The above is a slight generalization of the Aizenman-Contucci identities derived for mean-field spin

glass models where Fs is a polynomial [1]. It is a simple exercise to check that these identities

are implied by the Ghirlanda-Guerra identities (see e.g. [9]). Therefore, one could ask what extra

condition should the system fulfill in order to satisfy the latter. It turns out that ergodicity suffices.

3.2 The Ghirlanda-Guerra identities

The key lemma used in the proof of our main result is a factorization of the expectation for observ-

ables of a specific form. A similar factorization was used in the case of spin glass systems to prove

the Ghirlanda-Guerra identities (see equation (12) in [9]).
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Lemma 3.2. Let (ξ,Q) be a ROSt that is quasi-stationary and ergodic under Φr for all linear function

ψ(κ) = λκ for λ in some some open set of R. Consider Fs(q) a bounded function on the overlaps of s

points. Then the following holds

Er



∑

i1,...,is

ξi1
...ξis

κi1
(−1)Fs(q)


= Er



∑

i

ξi κi(−1)


E(s)

�
Fs(q)

�
. (16)

Proof. The exchangeability in time of the past increments yields

Er



∑

i1,...,is

ξi1
...ξis

κi1
(−1)Fs(q)


= Er



∑

i1,...,is

ξi1
...ξis

 
1

T

T∑

t=1

κi1
(−t)

!
Fs(q)


 (17)

for all T ∈ N. Recall that Fs is bounded, say |Fs(q)| ≤ C for some C > 0, so

¯̄
¯Er



∑

i1,...,is

ξi1
...ξis

 
1

T

T∑

t=1

κi1
(−t)

!
Fs(q)



¯̄
¯≤ CEr



∑

i

ξi |κi(−1)|



which is finite by Lemma A.2. Therefore we can take the limit T → ∞ of equation (17) and by

dominated convergence we get

lim
T→∞
Er



∑

i1,...,is

ξi1
...ξis

 
1

T

T∑

t=1

κi1
(−t)

!
Fs(q)


= Er



∑

i

ξi κi(−1)


E(s)

�
Fs(q)

�

as the velocity is common and deterministic by Proposition 2.5.

The next proposition claims the moment version of the Ghirlanda-Guerra identities under the sta-

bility hypothesis.

Proposition 3.3. Let ψ, Fs and (ξ,Q) be as in Proposition 3.1. If (ξ,Q) is also ergodic under the

considered evolutions, then for any s ∈ N its law satisfies

E
(s+1)

h
qr

s,s+1Fs(q)
i
=

1

s
E
(2)[qr

12]E
(s)[Fs(q)] +

1

s

s−1∑

l=1

E
(s)[qr

lsFs(q)] (18)

Proof. As in the proof of Proposition 3.1, (ξ,Q) must be quasi-stationary under Φr for all linear

functions λκ for λ in an interval containing 0. In particular, it fulfills the hypothesis of Lemma 3.2.

We take the λ-derivative on both sides of the identity (16). A quick computation of the Gaussian

derivative of the left-hand side is possible as Proposition 3.1 and the factorization property show

that only the terms where κi1
is hit by the derivative are relevant. The straightforward calculation

yields for the left-hand side

s∑

l=1

E
(s)
�

qr
lsFs(q)

�
− sE(s+1)

h
qr

s,s+1Fs(q)
i

.

The derivative of the r.h.s is simply (1− E(2)[qr
12])E

(s)
�

Fs

�
by Lemma 2.7. The claim follows by

combining both sides.
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Before turning to the proof of Theorem 1.7, we remark that Proposition 3.3 provides an alternative

proof of the Ruzmaikina-Aizenman theorem[14; 4]. Indeed, when Q is the identity matrix, the

Ghirlanda-Guerra identities become identities for the moments of ξ. In fact they are known to

characterize the Poisson-Dirichlet variables (see Proposition 1.2.8 in [15]). Note however that our

hypotheses are stronger than in the original result, since the property is asked to hold in an open set

of the parameter.

Corollary 3.4. Let h ∈ R be such that ψ′(h) 6= 0. If (ξ, {δi j}) is a quasi-stationary and ergodic ROSt

under Φr with function ψ(βκ + h) for all β in a neighborhood of 0, then ξ is a Poisson-Dirichlet

variable.

Proof of Theorem 1.7. By the hypothesis of the theorem, the ROSt is quasi-stationary under Φr for

all r ∈ N. In particular, the identities (18) hold for every r ∈ N and hence for the distribution

conditioned on the σ-field Fs generated by the overlaps of s points

P
(s+1)

�
qs,s+1 ∈ A |Fs

�
=

1

s
P
(2)(q12 ∈ A) +

1

s

s−1∑

l=1

χA(qls)

where A⊆ [−1,1]. On the other hand, ξ is independent of Q by Theorem 1.6. Therefore equation

(18) actually holds for every fixed integer i1, ..., is

P

�
qis ,is+1

∈ A |Fs

�
=

1

s
P(qi1 i2

∈ A) +
1

s

s−1∑

l=1

χA(qil ,is
).

Moreover, we know that given the directing measure µ on H , Q is constructed as the Gram matrix

of iid µ-distributed elements. Hence the above can be rewritten as

E

�
µ⊗s
�

qs,s+1 ∈ A|Fs

��
=

1

s
E

�
µ⊗2

�
q12 ∈ A

��
+

1

s

s−1∑

l=1

χA(qls)

and the theorem is proven.

A The evolution Φ revisited

In this section, we prove Lemma 2.2 on the existence of a Λ-invariant probability measure on Ω =

Ωos ×
∏

t∈ZE
N which extends the law of a quasi-stationary ROSt. The exchangeability of the past

time-steps of the evolution is also shown. We split the proof into two lemmas.

Lemma A.1. Let (ξ,Q) be a quasi-stationary ROSt under Φr . There exists a unique Λ-invariant prob-

ability measure on Ω whose restriction on Ωos is the law of (ξ,Q). Moreover, this measure is ergodic

under Λ if and only if (ξ,Q) is ergodic.

Proof. For convenience, we denote the evolution Φψ(κ(t)) by Φt to lighten notation. We also write

Λ for the map on the space Ω−T := Ωos ×
∏

t≥−T R
N whose action is to evolve the configuration

recording the present increment as the last one:

Λ : Ω−T → Ω−T−1

(ξ,Q, (κ(t), t ≥−T )) 7→
�
Φψ(κ(0))(ξ,Q), (κ↓(t + 1), t ≥−T − 1)

�
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First, consider the collection of measures P(T )r := Pr ◦Λ−T , T ∈ N, where Pr is of the form (6). We

will prove that these measures are consistent: for all T ∈ N,

P
(T+1)
r

¯̄
¯
Ω−T

= P(T )r . (19)

The extension of Pr to Ω then follows by Kolmogorov’s extension theorem. By definition, P(T )r is the

distribution of �
ΦT−1 ◦ ... ◦Φ0(ξ,Q), (κ↓(t + T ), t ≥−T )

�
(20)

under Pr . Similarly, P(T+1)
r restricted to Ω−T corresponds to the distribution of

�
ΦT ◦ ... ◦Φ1

�
Φ0(ξ,Q)

�
, (κ↓(t + T + 1), t ≥−T )

�
.

By stationarity, Φ0(ξ,Q), has the same distribution as (ξ,Q) though its law depends explicitly on

κ(0). However, as the field (κ(t + T + 1), t ≥ −T ) depends only on κ(0) through Q and as the

distribution of Q is preserved under evolution, we have that the restriction of P(T+1)
r is the law of

�
ΦT ◦ ... ◦Φ1(ξ,Q), (κ↓(t + T + 1), t ≥−T )

�

which only differs from (20) by a mere relabeling of t. Equation (19) is established and the exis-

tence is proven. The invariance under Λ is straightforward from the construction of the measure.

Moreover, the extension is ergodic as it is extremal in the set of Λ-invariant measure if and only if

the law of (ξ,Q) is extremal.

Lemma A.2. The sequence of past increments (κ(t), t < 0) is exchangeable conditionally on (ξ,Q)

under the probability measure constructed in Lemma A.1.

Let α be the empirical measure of (κ(−t), t ∈ N). The random variables ψ(κi(−t)) have finite p-

moments under the probability measure Pr( · |ξ,Q,α) for any i, t ∈ N and 1≤ p <∞ a.s.

Proof. Denote by σ(X ) the σ-algebra generated by a random variable X . Define Si(T − 1) :=∑T−1

t=0 ψ(κi(t)) where the indexing i is done through the ordering at time 0. We claim that

σ
�
ξ,Q, (Si(T − 1), i ∈ N)

�
= σ

�
ΦT−1 ◦ ... ◦Φ0(ξ,Q), (S̃ j(T − 1), j ∈ N)

�
(21)

where (S̃ j(T−1), j ∈ N) := (Si(T−1), i ∈ N)↓ are the increments of the T time-steps reindexed with

respect to the ordering after evolution. To shorten notation, let us write G for the left-hand side and

G̃ for the right-hand side. For convenience, we write ξ̃ for the evolved ξ after T time-steps i.e.

ξ̃ :=

�
ξie

Si(T−1)

∑
k ξkeSk(T−1)

, i ∈ N
�

↓
.

It is clear from the above expression that ξ̃ is G -measurable. As the reindexing of Q and Si(T − 1)

induced by the evolution depends only on ξ̃, we see that actually ΦT−1 ◦ ... ◦Φ0(ξ,Q) and (S̃ j(T −
1), j ∈ N) are G -measurable. The ⊇ part of equation (21) is proven. For the ⊆ part, it is easy to

check that

ξ=

 
ξ̃ je
−S̃ j(T−1)

∑
k ξ̃ke−S̃k(T−1)

, j ∈ N
!

↓
.
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Similarly as before, we conclude that (ξ,Q) and (Si(T −1), i ∈ N) are G̃ -measurable. Equation (21)

is proven

Recall that the fields κ(t) , 0 ≤ t ≤ T − 1, indexed by the ordering at time 0 are iid-distributed

conditionally on (ξ,Q). In particular, they are exchangeable given the sums (Si(T − 1), i ∈ N).
Therefore, for any permutation ρ of T elements, the following holds

Pr(κ(t) ∈ At , 0≤ t ≤ T − 1 |G ) = Pr(κ(ρt) ∈ At , 0≤ t ≤ T − 1 |G )

for any At , 0 ≤ t ≤ T − 1, Borel sets of RN. Moreover, the fields κ(t) can be indexed with the

ordering at time T as this ordering is G -measurable. From (21), it follows that

Pr(κ(t) ∈ At , 0≤ t ≤ T − 1 |G̃ ) = Pr(κ(ρt) ∈ At , 0≤ t ≤ T − 1 |G̃ ).

The first claim is obtained from the above by integrating over (S̃ j(T−1), j ∈ N)↓ and using invariance

under Λ.

For the second claim, we can assume without loss of generality that p is an integer. By exchange-

ability in t, it suffices to prove the claim for ψ(κi(−1)), i ∈ N. The conclusion will be obtained by

proving that Er

� ∑
i ξi |ψ(κi(−1))|p

�
<∞. We have by definition of the past increment

Er



∑

i

ξi |ψ(κi(−1))|p

= Er



∑

i ξie
ψ(κi(0)) |ψ(κi(0))|p∑

j ξ j eψ(κ j(0))


 .

The Cauchy-Schwarz inequality followed by applications of Jensen’s inequality with the functions

f (y) = y2 and f (y) = 1/y2 shows that the right-hand side is smaller than

Er



∑

i

ξie
2ψ(κi(0)) ψ(κi(0))

2p




1/2

Er



∑

i

ξie
−2ψ(κi(0))




1/2

.

As κ is independent of ξ conditionally on Q, we can take the expectation over each κi through to

get
�

d2p

d2p g(2)
�1/2

g(−2)1/2 where g(λ) :=
∫
R

e−z2/2
p

2π
eλψ(z)dz. But this is finite whenever ψ satisfies

Assumption 1.3.

B Reduction to the linear case

The proof of the main theorem in [3] was achieved by reducing the evolution with a smooth ψ

to an evolution with a linear ψ by a central limit theorem argument. In brief, one considers T

independent steps of the evolution

Φλψ(κ(T−1)) ◦ ... ◦Φλψ(κ(0)) (22)

together with the scaling λ → λ/
p

T . In the limit T → ∞, the dynamics has simply Gaussian

increments with an effective covariance q̂i j := E[ψ(κi)ψ(κ j)]. We could conclude that the Q-factors

of (ξ, Q̂) are RPC’s from the analysis of the linear case. Monotonicity of the function qr
i j 7→ q̂i j(r) for

r large enough and properties of the RPC’s permitted to deduce that (ξ,Q) is a RPC whenever (ξ, Q̂)

is. A similar reduction to the linear case can be carried when quasi-stationarity is assumed for a

collection of functions ψ(β ·+h). Under the new assumption, the limiting linear dynamics turns out

to be somewhat simpler as it produces the same effective covariance matrix as the original system.

The proof is very similar to the proof of Lemma 4.8 in [3]. We present it for completeness.
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Lemma B.1. Let h ∈ R be such that ψ′(h) 6= 0. If (ξ,Q) is a quasi-stationary ROSt under Φr with

function ψ(βκ+h) for all β in a neighborhood of 0, then (ξ,Q) is also quasi-stationary under Φr with

function λκ for all λ in a neighborhood of 0.

Proof. First, we recall that the law of a ROSt is determined by the class of continuous functions that

depend only on a finite number of points (Proposition 1.2 in [3]). Let f : Ωos → R be a continuous

function depending on the first n points for some n ∈ N i.e. f (ξ,Q) = f (ξ1, ...,ξn;Qn) where

Qn = {qi j}1≤i, j≤n. Consider T independent copies of the Gaussian field κ: (κ(t), 0 ≤ t ≤ T − 1).

Define the evolution by T independent steps

ΦT := Φψ(βκ(T−1)+h) ◦ ... ◦Φψ(βκ(0)+h) . (23)

To prove the claim, we need to show that for any such f : Ωos → Ωos and under an appropriate

scaling of β

Er[ f (ξ,Q)] = lim
T→∞
Er[ f (ΦT (ξ,Q))] = Er[ f (Φλκ(ξ,Q))] (24)

for some λ ∈ R. The first equality holds by the quasi-stationarity hypothesis for all β in a neighbor-

hood of 0. We prove the second one.

We choose the scaling

β = β(T ) =
λ

|ψ′(h)|
p

T
.

It is straightforward to check, by expanding ψ around h and using the boundedness of the second

derivatives, that with this choice

lim
T→∞

T−1∑

t=0

Er

h�
ψ(βκi(t) + h)−ψ(h)

��
ψ(βκ j(t) + h)−ψ(h)

� ¯̄
¯ Q
i
= λ2qr

i j .

Note that, because of the normalization of the dynamics, the effective increment of each particle

can be taken to be ψ(βκi + h) − ψ(h). Hence, by the finite-dimensional central limit theorem

and the above convergence, the increments of a fixed number of particles converge to a centered

Gaussian field with covariance matrix λ2qr
i j . It remains to prove that the limit T → ∞ of (24) is

well-approximated by considering a large but finite number of particles.

For δ′,δ ∈ (0,1] and δ′ < δ, we define the function fδ and fδ,δ′ as

fδ(ξ1, ...,ξn;Qn) := f (ξ1, ...,ξn;Qn)χ{ξn≥δ}

and

fδ,δ′(ξ1, ...,ξn;Qn) := fδ(ξ1/Nδ′ , ...,ξn/Nδ′ ;Qn)

where Nδ′ :=
∑

i:ξi≥δ′ ξi . Clearly, fδ → f a.s. when δ→ 0 as ξn > 0 a.s. Notice also that Nδ′ → 1

when δ′→ 0. Therefore, by continuity

lim
δ→0

lim
δ′→0

fδ,δ′(ξ1, ...,ξn;Qn) = f (ξ1, ...,ξn;Qn) a.s.

Let Ac
N ,δ′,T be the event that all evolved points in [δ′, 1] after T steps come from the first N before

evolution. We write Φr(ξ,Q)|N for the evolution restricted to the first N points of (ξ,Q). Because
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the function fδ,δ′(Φr(ξ,Q)) on the event Ac
N ,δ′,T is effectively a function of Φr(ξ,Q)|N , one has

¯̄
¯Er[ fδ,δ′(ΦT (ξ,Q))]−Er

�
fδ,δ′(ΦT (ξ,Q)|N )

� ¯̄
¯≤

Er

h¯̄
fδ,δ′(ΦT (ξ,Q))− fδ,δ′(ΦT (ξ,Q)|N )

¯̄
χAN ,δ′ ,T

i
. (25)

The limit (24) will thus hold by respectively taking the limits T →∞, N →∞ and δ,δ′ → 0 if we

can show that the probability of the event AN ,δ′,T is small for N large uniformly in T . But this is

clear from the fact that under the chosen scaling of β (see Lemma 4.6 of [3] for details) :

Pr

�
AN ,δ′,T

�
≤ K

∑

i>N

E[ξi]

for some constant K that only depends on ψ, δ′ and λ.
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