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Abstract

Stack-triangulations appear as natural objects when one wants to define some families of
increasing triangulations by successive additions of faces. We investigate the asymptotic
behavior of rooted stack-triangulations with 2n faces under two different distributions. We
show that the uniform distribution on this set of maps converges, for a topology of local
convergence, to a distribution on the set of infinite maps. In the other hand, we show that
rescaled by n1/2, they converge for the Gromov-Hausdorff topology on metric spaces to the
continuum random tree introduced by Aldous. Under a distribution induced by a natural
random construction, the distance between random points rescaled by (6/11) log n converge
to 1 in probability.
We obtain similar asymptotic results for a family of increasing quadrangulations.
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1 Introduction

Consider a rooted triangulation of the plane. Choose a finite triangular face ABC and add
inside a new vertex O and the three edges AO, BO and CO. Starting at time 1 from a single
rooted triangle, after k such evolutions, a triangulation with 2k +2 faces is obtained. The set of
triangulations △2k with 2k faces that can be reached by this growing procedure is not the set
of all rooted triangulations with 2k faces. The set △2k – called the set of stack-triangulations
with 2k faces – can be naturally endowed with two very different probability distributions:

- the first one, very natural for the combinatorial point of view, is the uniform distribution
U△

2k,

- the second probability Q△
2k maybe more realistic following the description given above, is

the probability induced by the construction when the faces where the insertion of edges
are done are chosen uniformly among the existing finite faces.

Figure 1: Iterative construction of a stack-triangulation. Note that three different histories lead
to the final triangulation.

The aim of this paper is to study these models of random maps. Particularly, we are interested in
large maps when the number of faces tends to +∞. It turns out that this model of triangulations
is combinatorially simpler that the set of all triangulations. Under the two probabilities Q△

2k and

U△
2k we exhibit a global limit behavior of these maps.

A model of increasing quadrangulations is also treated at the end of the paper. In few words
this model is as follows. Begin with the rooted square and successively choose a finite face
ABCD, add inside a node O and two new edges: AO and OC (or BO and OD). When these
two choices of pair of edges are allowed we get a model of quadrangulations that we were unable
to treat as wanted (see Section 8.1). When only a suitable choice is possible, we get a model
very similar to that of stack-triangulations that may be endowed also with two different natural
probabilities. The results obtained are, up to the normalizing constants, the same as those
obtained for stack-triangulations. For sake of briefness, only the case of stack-triangulations is
treated in details.

We present below the content of the paper and a rough description of the results, the formal
statements being given all along the paper.

1.1 Contents

In Section 2 we define formally the set of triangulations △2n and the two probabilities U△
2n and

Q△
2n. This section contains also a bijection between △2n and the set T ter

3n−2 of ternary trees with
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3n− 2 nodes deeply used in the paper. In Section 3 are presented the two topologies considered
in the paper:

- the first one is an ultra-metric topology called topology of local convergence. It aims to
describe the limiting local behavior of a sequence of maps (or trees) around their roots,

- the second topology considered is the Gromov-Hausdorff topology on the set of compact
metric spaces. It aims to describe the limiting behavior of maps (or trees) seen as metric
spaces where the distance is the graph distance. The idea here is to normalize the distance
in maps by the order of the diameter in order to observe a limiting behavior.

In Section 4.1 are recalled some facts concerning Galton-Watson trees conditioned by the size n,
when the offspring distribution is νter = 1

3δ3 + 2
3δ0 (the tree is ternary in this case). It is recalled

(Section 4.2) that they converge under the topology of local convergence to an infinite branch,
(the spine or infinite line of descent) on which are grafted some critical ternary Galton-Watson
trees; rescaled by n1/2 they converge for the Gromov-Hausdorff topology to the continuum
random tree (CRT), introduced by Aldous [1] (Section 5.1).

Sections 4 and 5 are devoted to the statements and the proofs of the main results of the paper
concerning random triangulations under U△

2n, when n → +∞. The strongest theorems of these
parts, that may also be considered as the strongest results of the entire paper, are:

- the weak convergence of U△
2n for the topology of local convergence to a measure on infinite

triangulations (Theorem 12, Section 4),

- the convergence in distribution of the metric of stack-triangulations for the Gromov-
Hausdorff topology (the distance being the graph distance divided by

√
6n/11) to the CRT

(Theorem 15, Section 5). It is up to our knowledge, the only case where the convergence
of the metric of a model of random maps is proved (apart from trees).

Section 7 is devoted to the study of △2n under Q△
2n. Under this distribution, there is no local

convergence around the root, its degree going a.s. to +∞. Theorem 21 says that seen as
metric spaces they converge normalized by (6/11) log n, in the sense of the finite dimensional
distributions, to the discrete distance on [0, 1] (the distance between different points is 1). Hence,
there is no weak convergence for the Gromov-Hausdorff topology, the space [0, 1] under the
discrete distance being not compact. Section 7.2 contains some elements stating the speed of
growing of the maps (the evolution of the node degrees, or the size of a sub-map).

Section 8 is devoted to the study of a model of quadrangulations very similar to that of stack-
triangulations, and to some questions related to another family of growing quadrangulations.

Last, the Appendix, Section 9, contains the proofs that have been extracted from the text for
sake of clarity.

1.2 Literature about stack-triangulations

The fact that stack-triangulations are in bijection with ternary trees, is well known, and will be
proved in Section 1, using the idea of Darrasse and Soria [16].
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Stack-triangulations appear in the literature for very various reasons. In Bernardi and Bonichon
[7], stack-triangulations are shown to be in bijection with intervals in the Kreweras lattice (and
realizers being both minimal and maximal). The set of stack triangulations coincides also with
the set of plane triangulations having a unique Schnyder wood (see Felsner and Zickfeld [21]).

These triangulations appear also around the problem of graph uniquely 4-colorable. A graph G
is uniquely 4-colorable if it can be colored with 4 colors, and if every 4-coloring of G produces
the same partition of the vertex set into 4 color classes. There is an old conjecture saying that
the family of maps having this property is the set of stack-triangulations. We send the interested
reader to Böhme & al. [10] and references therein for more information on the question.

As illustrated on Figure 2, these triangulations appear also in relation with Apollonian circles.
We refer to Graham & al. [25], and to several other works of the same authors, for remarkable
properties of these circles.

The so-called Apollonian networks, are obtained from Apollonian space-filling circles packing.
First, we consider the Apollonian space-filling circles packing. Start with three adjacent circles
as on Figure 2. The hole between them is filled by the unique circle that touches all three,
forming then three new smaller holes. The associated triangulations is obtained by adding an
edge between the center of the new circle C and the three centers of the circles tangent to C.
If each time a unique hole receives a circle, the set of triangulation that may be obtained is the
set of stack-triangulations. If each hole received a circle altogether at the same time, we get the
model of Apollonian networks. We refer to Andrade & al. [3] and references therein for some
properties of this model of networks.

The random Apollonian model of network studied by Zhou & al. [47], Zhang & al. [45], and
Zhang & al. [46] (when their parameters d is 2) coincides with our model of stack-triangulations
under Q△ . Using physicist methodology and simulations they study among others the degree
distribution (which is seen to respect a power-law) and the distance between two points taken
at random (that is seen to be around log n).

Darrasse and Soria [16] obtained the degree distribution on a model of “Boltzmann” stacked
triangulations, where this time, the size of the quadrangulations is random, and uniformly
distributed conditionally to its size. Bodini, Darrasse and Soria [9], computed the limiting
distribution (and the moment convergence) of the distance of a random node to the root, and

between two random nodes under U△
2n (these results are obtained with a method absolutely

different to those involved to prove Theorem 15). Their results is in accordance with Theorem
15.

We end the introduction by reviewing the known asymptotic behaviors of quadrangulations and
triangulations with n faces under the uniform distribution (or close distributions in some sense).

1.3 Literature about convergence of maps

We refer to Angel & Schramm [5], Chassaing & Schaeffer [14] Bouttier & al. [11] for an overview
of the history of the study of maps from the combinatorial point of view, and to the references
therein for the link with the 2-dimensional quantum gravity of physicists. We here focus on
the main results concerning the convergence of maps. We exclude the results concerning trees
(which are indeed also planar maps).
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Figure 2: Construction of Apollonian’s circles by successive insertions of circles (the starting
point is three tangent circles). To get the triangulation associated, add an edge between the
center of the new circle C and the three centers of the circles tangent to C.

In the very last years, many studies concerning the behavior of large maps have been published.
The aim in these works was mainly to define or to approach a notion of limiting map. Appeared
then two different points of view, two different topologies to measure this convergence.

Angel & Schramm [5] showed that the uniform distribution on the set of rooted triangulations
with n faces (in fact several models of triangulations are investigated) converges weakly for
a topology of local convergence (see Section 3.1) to a distribution on the set of infinite but
locally finite triangulations. In other words, for any r, the sub-map Sr(n) obtained by keeping
only the nodes and edges at distance smaller or equal to r from the root vertex, converges in
distribution toward a limiting random map Sr. By a theorem of Kolmogorov this allows to show
the convergence of the uniform measure on triangulations with n faces to a measure on the set
of infinite but locally finite rooted triangulations (see also Krikun [28] for a simple description of
this measure). Chassaing & Durhuus [13] obtained then a similar result, with a totally different
approach, on uniform rooted quadrangulations with n faces.

The second family of results concerns the convergence of rescaled maps: the first one in this
direction has been obtained by Chassaing & Schaeffer [14] who studied the limiting profile of
quadrangulations. The (cumulative) profile (Prof(k), k ≥ 0) of a rooted graph, defined in Section
5, gives the successive number of nodes at distance smaller than k from the root. Chassaing &
Schaeffer [14, Corollary 4] showed that

(
Prof((8n/9)1/4x)

n

)

x≥0

→ (J [m, m + x])x≥0

where the convergence holds weakly in D([0, +∞), R). The random probability measure J is
ISE the Integrated super Brownian excursion. ISE is the (random) occupation measure of the
Brownian snake with lifetime process the normalized Brownian excursion, and m is the minimum
of the support of J . The radius, i.e. the largest distance to the root, is also shown to converge,
divided by (8n/9)1/4, to the range of ISE. Then,
– Marckert & Mokkadem [39] showed the same result for pointed quadrangulations with n faces,
– Marckert & Miermont [37] showed that up to a normalizing constant, the same asymptotic
holds for pointed rooted bipartite maps under Boltzmann distribution with n faces, (the weight
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of a bipartite map is
∏

f face of m wdeg(f) where the (w2i)i≥0 is a “critical sequence of weight”),
– Weill [44] obtained the same results as those of [37] in the rooted case,
– Miermont [40] provided the same asymptotics for rooted pointed Boltzmann maps with n faces
with no restriction on the degree,
– Weill and Miermont [41] obtained the same result as [40] in the rooted case.

All these results imply that if one wants to find a (finite and non trivial) limiting object for
rescaled maps, the edge-length in maps with n faces has to be fixed to n−1/4 instead of 1.
In Marckert & Mokkadem [39], quadrangulations are shown to be obtained as the gluing of
two trees, thanks to the Schaeffer’s bijection (see [43; 14; 39]) between quadrangulations and
well labeled trees. They introduce also a notion of random compact continuous map, “the
Brownian map”, a random metric space candidate to be the limit of rescaled quadrangulations.
In [39] the convergence of rescaled quadrangulations to the Brownian map is shown but not
for a “nice topology”. As a matter of fact, the convergence in [39] is a convergence of the
pair of trees that encodes the quadrangulations to a pair of random continuous trees, that also
encodes, in a sense similar to the discrete case, a continuous object that they name the Brownian
map. “Unfortunately” this convergence does not imply – at least not in an evident way – the
convergence of the rescaled quadrangulations viewed as metric spaces to the Brownian map for
the Gromov-Hausdorff topology.

Some authors think that the Brownian map is indeed the limit, after rescaling, of classical
families of maps (those studied in [14; 39; 37; 44; 40; 41]) for the Gromov-Hausdorff topology.
Evidences in this direction have been obtained by Le Gall [31] who proved the following result.
He considers Mn a 2p-angulations with n faces under the uniform law. Then, he shows that
at least along a suitable subsequence, the metric space consisting of the set of vertices of Mn,
equipped with the graph distance rescaled by the factor n1/4, converges in distribution as n → ∞
towards a limiting random compact metric space, in the sense of the Gromov-Hausdorff distance.
He proved that the topology of the limiting space is uniquely determined independently of p and
of the subsequence, and that this space can be obtained as the quotient of the CRT for an
equivalence relation which is defined from Brownian labels attached to the vertices. Then Le
Gall & Paulin [32] show that this limiting space is topologically a sphere. The description of the
limiting space is a little bit different from the Brownian map but one may conjecture that these
two spaces are identical.

Before coming back to our models and results we would like to stress on two points.
• The topology of local convergence (on non rescaled maps) and the Gromov-Hausdorff topology
(on rescaled map) are somehow orthogonal topologies. The Gromov-Hausdorff topology consid-
ers only what is at the scaling size (the diameter, the distance between random points, but not
the degree of the nodes for example). The topology of local convergence considers only what is
at a finite distance from the root. In particular, it does not measure at all the phenomenons
that are at the right scaling factor, if this scaling goes to +∞. This entails that in principle one
may not deduce any non-trivial limiting behavior for the Gromov-Hausdorff topology from the
topology of local convergence, and vice versa.
• There is a conjecture saying that properly rescaled random planar maps conditioned to be
large should converge to a limiting continuous random surface, whose law should not depend up
to scaling constant from the family of reasonable maps that are sample. This conjecture still
holds even if the family of stack-maps studied here converges to some objects that can not be
the limit of uniform quadrangulations. The reason is that stack-maps are in some sense not
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reasonable maps.

2 Stack-triangulations

2.1 Planar maps

A planar map m is a proper embedding without edge crossing of a connected graph in the sphere.
Two planar maps are identical if one of them can be mapped to the other by a homeomorphism
that preserves the orientation of the sphere. A planar map is a quadrangulation if all its faces
have degree four, and a triangulation if all its faces have degree three. There is a difference
between the notions of planar maps and planar graphs, a planar graph having possibly several
non-homeomorphic embeddings on the sphere.

Figure 3: Two rooted quadrangulations and two rooted triangulations.

In this paper we deal with rooted planar maps (m, E): an oriented edge E = (E0, E1) of m is
distinguished. The point E0 is called the root vertex of m. Two rooted maps are identical if the
homeomorphism preserves also the distinguished oriented edge. Rooting maps like this allows
to avoid non-trivial automorphisms. By a simple projection, rooted planar maps on the sphere
are in one to one correspondence with rooted planar maps on the plane, where the root of the
latter is adjacent to the infinite face (the unbounded face) and is oriented in such a way that
the infinite face lies on its right, as on Figure 3. From now on, we work on the plane.

For any map m, we denote by V (m), E(m), F (m), F ◦(m) the sets of vertices, edges, faces and
finite faces of m; for any v in V (m), we denote by deg(v) the degree of v. The graph distance dG

between two vertices of a graph G is the number of edges in a shortest path connecting them.
The set of nodes of a map m equipped with the graph distance denoted by dm is naturally a
metric space. The study of the asymptotic behavior of (m, dm) under various distributions is
the main aim

2.2 The stack-triangulations

We build here △2k the set of stack-triangulations with 2k faces, for any k ≥ 1.

Set first △2 = {Θ} where Θ denotes the unique rooted triangle (the first map in Figure 1).
Assume that △2k is defined for some k ≥ 1 and is a set of rooted triangulations with 2k faces.
We now define △2(k+1). Let

△•
2k = {(m, f) | m ∈ △2k, f ∈ F ◦(m)}

1630



be the set of rooted triangulations from △2k with a distinguished finite face. We now introduce
an application Φ from △•

2k onto the set of all rooted triangulations with 2(k+1) faces (we should
write Φk). For any (m, f) ∈ △•

2k, Φ(m, f) is the following rooted triangulation: draw m in the
plane, add a point x inside the face f and three non-crossing edges inside f between x and the
three vertices of f adjacent to x (see Figure 4). The obtained map has 2k + 2 faces.

We call △2(k+1) = Φ(△•
2k) the image of this application.

On Figure 3, the first triangulation is in △10 (see also Figure 1). The second one is not in △8

since it has no internal node having degree 3.

f

Figure 4: A triangulation (m, f) with a distinguished face and its image by Φ.

Definition 1. We call internal vertex of a stack-triangulation m every vertex of m that is not
adjacent to the infinite face (all the nodes but three).
We call history of a stack-triangulation mk ∈ △2k any sequence

(
(mi, fi), i = 1, . . . , k − 1

)
such

that mi ∈ △2i, fi ∈ F ◦(mi) and mi+1 = Φ(mi, fi). We let H(m) be the set of histories of m,
and H△(k) = {H(m) | m ∈ △2k}.

We define here a special drawing G(m) of a stack-triangulation m. The embedding G(Θ) of
the unique rooted triangle Θ is fixed at position E0 = (0, 0), E1 = (1, 0), E2 = eiπ/3 (where
E0, E1, E2 are the three vertices of Θ, and (E0, E1) its root). The drawing of its edges are
straight lines drawn in the plane. To draw G(m) from G(m′) when m = Φ(m′, f ′), add a point
x in the center of mass of f ′, and three straight lines between x and the three vertices of f ′

adjacent to x. The faces of G(m) hence obtained are geometrical triangles. Presented like this,
G(m) seems to depend on the history of m used in its construction, and thus we should have
written Gh(m) instead of G(m), where the index h would have stood for the history h used. But
it is easy to check (see Proposition 2) that if h, h′ are both in H(m) then Gh′(m) = Gh(m).

Definition 2. The drawing G(m) is called the canonical drawing of m.

2.2.1 Two distributions on △2k

For any k ≥ 1, we denote by U△
2k the uniform distribution on △2k.

We now define a second probability Q△
2k. For this, we construct on a probability space (Ω, P) a

process (Mn)n≥1 such that Mn takes its values in △2n as follows: first M1 is the rooted triangle
Θ. At time k + 1, choose a finite face Fk of Mk uniformly among the finite faces of Mk and this
independently from the previous choices and set

Mk+1 = Φ(Mk, Fk).

We denote by Q△
2k the distribution of Mk. Its support is exactly △2k.
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The weight of a map under Q△
2k being proportional to its number of histories, it is easy to check

that Q△
2k 6= U△

2k for k ≥ 4.

2.3 Combinatorial facts

We begin this section where is presented the bijection between ternary trees and stack-
triangulations with some considerations about trees.

2.3.1 Definition of trees

∅

11 12

211 212

21
13

21

Figure 5: A rooted tree and its usual representation on the plane.

Consider the set W =
⋃

n≥0 Nn of finite words on the alphabet N = {1, 2, 3, . . . } where by

convention N0 = {∅}. For u = u1 . . . un, v = v1 . . . vm ∈ W , we let uv = u1 . . . unv1 . . . vm be the
concatenation of the words u and v.

For m1, . . . , mp ∈ N, we let {m1, . . . , mp}⋆ = ∪n≥0 {m1, . . . , mp}n be the set of finite words with
letters m1, . . . , mp.

Definition 3. A planar tree t is a subset of W
• containing the root-vertex ∅,
• such that if ui ∈ t for some u ∈ W and i ∈ N, then u ∈ t,
• and such that if ui ∈ t for some u ∈ W and i ∈ N, then uj ∈ t for all j ∈ {1, . . . , i}.

We denote by T the set of planar trees. For any u ∈ t, let cu(t) = max{i | ui ∈ t} be the
number of children of u. The elements of a tree t are called nodes, a node having no child a leaf,
the other nodes the internal nodes. The set of leaves of t will be denoted by ∂t, and its set of
internal nodes by t◦. The number of nodes of a tree t is denoted by |t|.
A binary (resp. ternary) tree t is a planar tree such that cu(t) ∈ {0, 2} (resp. cu(t) ∈ {0, 3}) for
any u ∈ t. We denote by T bin and T ter the set of finite or infinite binary and ternary trees, and
by T bin

n and T ter
n the corresponding set of trees with n nodes.

If u and v are two nodes in t, we denote by u ∧ v the deepest common ancestor of u and v, i.e.
the largest word w prefix to both u and v (the node u∧v is in t). The length |u| of a word u ∈ W
is called the height or depth of u, or graph distance of u to the root, if considered as a vertex of
some tree. For u = u1 . . . un ∈ t, we let u[j] = u1 . . . uj and [[∅, u]] = {∅, u[1], . . . , u[n]} be the
ancestral line of u back to the root. For any tree t and u in t, the fringe subtree tu := {w | uw ∈ t}
is in some sense, the subtree of t rooted in u. Finally recall that the lexicographical order (LO)
on W induces a total ordering of the nodes of any tree.
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We now give a formalism to describe the growth of trees. We denote by T ter•
3n+1 := {(t, u) | t ∈

T ter
3n+1, u ∈ ∂t} the set of ternary trees with 3n+1 nodes with a distinguished leaf. Very similarly

with the function Φ defined in Section 2.2, we define the application φ from T ter•
3k+1 into T ter

3k+4 as
follows; for any (t, u) ∈ T ter•

3k+1, let t′ := φ(t, u) be the tree t∪{u1, u2, u3} obtained from t by the
replacement of the leaf u by an internal node having 3 children.

Definition 4. As for maps (see Definition 1), for any tree t ∈ T ter

3k−2, a history of a tree t is a
sequence h′ =

(
(ti, ui), i = 1, . . . , k − 1

)
such that (ti, ui) ∈ T ter•

3i−2 and ti+1 = φ(ti, ui). The set of
histories of t is denoted by H(t), and we denote HT (k) = {H(t) | t ∈ T ter

3k−2}.

2.3.2 The fundamental bijection between stack-triangulations and ternary trees

Before explaining the bijection we use between △2K and T ter

3K−2 we define a function Λ which will
play an eminent role in our asymptotic results concerning the metrics in maps. Let W1,2,3 be the
set of words containing at least one occurrence of each element of Σ3 = {1, 2, 3} as for example
321, 123, 113211213123. Let u = u1 . . . uk be a word on the alphabet Σ3. Define τ1(u) := 0 and
τ2(u) := inf{i | i > 0, ui = 1}, the rank of the first apparition of 1 in u. For j ≥ 3, define

τj(u) := inf{i | i > τj−1(u) such that u1+τj−1(u) . . . ui ∈ W1,2,3}.

This amounts to decomposing u into subwords, the first one ending when the first 1 appears, the
subsequent ones ending each time that each of the three letters 1, 2 and 3 has appeared again.
For example if u = 22123122131 then τ1(u) = 0, τ2(u) = 3, τ3(u) = 6, τ4(u) = 10. Denote by

Λ(u) = max{i | τi(u) ≤ |u|} (1)

the number of these non-overlapping subwords. Further for two words (or nodes) u = wa1 . . . ak

and v = wb1 . . . bl with a1 6= b1, (in this case w = u ∧ v,) set

Λ(u, v) = Λ(a1 . . . ak) + Λ(b1 . . . bl). (2)

We call the one or two parameters function Λ the passage function.

We now describe a bijection Ψ△
K between △2K and T ter

3K−2 having a lot of important properties.
This bijection is inspired from Darrasse & Soria [16].

Proposition 1. For any K ≥ 1 there exists a bijection

Ψ△
K : △2K −→ T ter

3K−2

m 7−→ t := Ψ△
K(m)

such that:
(a) Each internal node u of m corresponds bijectively to an internal node v of t. We denote for
sake of simplicity by u′ the image of u.
(b) Each leaf of t corresponds bijectively to a finite triangular face of m.
(c) For any u internal node of m, Λ(u′) = dm(E0, u).
(d) For any u and v internal nodes of m

∣∣dm(u, v) − Λ(u′, v′)
∣∣ ≤ 4. (3)
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(e) Let u be an internal node of m. We have

degm(u) = 3 + #{v′ ∈ t◦ | v′ = u′w′, w′ ∈ 1 {2, 3}⋆ ∪ 3 {1, 2}⋆ ∪ 2 {1, 3}⋆}, (4)

where the set in (4) is the union of the subtrees of t◦ rooted in u′1, u′2 and u′3 formed by the
“binary trees” having no nodes containing a 1, resp. a 2, resp a 3.

We will write Ψ△ instead of Ψ△
K when no confusion on K is possible.

Property (e) in Proposition 1 is given in Darrasse & Soria [16], where it is used to derive the
asymptotic degree distribution of a random node under a Boltzmann distribution (see Section
6). We give below a complete proof of Proposition 1. The quotes around binary trees signal
that by construction these branching structures do not satisfy the requirements of Definition 3.

The existence of a bijection between △2K and T ter

3K−2 is well known and is a simple consequence
of the ternary decomposition of the maps in △2K , as illustrated on Figure 6: in the first step
of the construction of m, the insertion of the three first edges incident to the node x in the
triangle Θ splits it into three parts that behave clearly as stack-triangulations. The node x may
be recovered at any time since it is the unique vertex incident to the three vertices incident to
the infinite face. The bijection induced by this decomposition (this is illustrated on Figure 6)

E0

E0

E0

E1

E1
E1

E2 E2E2

x

xx

x

m

m2
m1

m3

Figure 6: Decomposition of a stack-triangulation using the recovering of the first inserted node.

can be defined in order to encode the distance between the nodes in the maps, and then to get
the properties announced in Proposition 1. This construction, presented below, is inspired by
Darrasse & Soria [16].

The proof of Proposition 1 we propose raises on an iterative argument, and then will raise on the
notion of histories. Since a stack-triangulation generally owns several histories, we need to show
some consistence properties of the construction, more or less intuitively clear. The consistence
needed relies on an association between the triangular faces of the canonical drawing introduced
in Definition 2 and the words on Σ3: thanks to the canonical drawing, there is a sense to talk
of a face f without referring to a map, and thanks to our construction of trees, there is a sense
to talk of a node u – which is a word – without referring to a tree. We will call canonical face

a geometrical face corresponding to a canonical drawing, given together with an oriented edge:
the notation f = (A, B, C) will refer to the canonical face f admitting (A, B) as oriented edge.
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Let us now design a bijection ψ△ which associates a word in Σ3 with each canonical face. The
image by ψ△ of the unique canonical face (E0, E1, E2) of the unique rooted triangle Θ on △2 is
∅, the empty word on Σ3. We now proceed by induction and consider FK the set of canonical
faces belonging to at least one of the canonical drawings of a map of △2K . Assume by induction
that for any face f in FK , ψ△(f) is well defined and is a word of Σ3. Assume also that there
is only one canonical face associated with a geometrical face: if (x1, x2, x3) and (y1, y2, y3) are
elements of FK associated with the same geometrical face, then (x1, x2, x3) = (y1, y2, y3).

Let f = (A, B, C) be a canonical face belonging to FK . The growing of a map having f as a
face, in the face f , is as explained above, obtained by inserting a node x in f and three edges
between x and the nodes A, B and C. The three ”new” canonical faces are set to be (B, C, x),
(A, x, C), (A, B, x) (this fixes the respected oriented edges, that are chosen in such a way that
the infinite face lies on the right of each of these new faces seen as maps, and then allow a
successive decomposition, see Figure 7). If the image of f by ψ△ is u, we associate respectively
with the three ”new” faces the nodes u1 , u2 and u3. The quotes around ”new” signal that a
face in FK may belong also in some Fj for j < K, and then these new faces may ”already”
belong to FK . Since the procedure of construction of the faces does not depend on the time K,
the association of u1, u2 and u3 with the new faces is consistent in time. One now can check
easily that ψ△ is now defined for any face of FK+1, and that the properties assumed on FK are
inherited in FK+1.

A AA BB
B

CC C

xxx x

Figure 7: Heritage of the canonical orientation of the faces. If the first face is sent on u, then
the other ones, from left to right are sent on u2, u3 and u1

Now, the bijection ψ△ induces a bijection ψ△
K between the set H△(K) of histories of the maps of

△2K and HT (K) the set of histories of the trees of T ter

3K−2 (for any K ≥ 1). More precisely, the

application ψ△
K is defined as follows. The history of the unique stack-triangulation with 4 faces is

(Θ, (E0, E1, E2)), and we fix its image to be ({∅}, ∅) the tree reduced to the root vertex, marked
on this node (which is a leaf). Let now K ≥ 3 be fixed and let hK =

(
(mi, fi), i = 1, . . . , K − 1

)

be a history of a triangulation mK of △2K . Recall the content of Section 2.2. In particular we
have mK = Φ(mK−1, fK−1).

By induction assume that a tree-history h′
K−1 :=

(
(ti, ui), i = 1, . . . , K − 2

)
is associated with

hK−1 :=
(
(mi, fi), i = 1, . . . , K −2

)
by ψ△

K−1. Particularly, we assume by induction that for any

i ≤ K − 2, ui is given by ψ△(fi) (that is the node marked in ti corresponds to the face marked
in mi). More globally, thinking to the construction induced by the history, this implies

t◦K−1 = {ψ△(fi) |1 ≤ i ≤ K − 2}.
To define h′

K , we let
{

uK−1 = ψ△(fK−1)
tK−1 = tK−2 ∪ {ψ△(fK−2)1, ψ△(fK−2)2, ψ△(fK−2)3}

.
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Since uK−1 = ψ△(fK−1) is a leaf of tK−2, tK−1 is indeed a tree, and also uK−1 is a leaf of tK−1;
hence h′

K :=
(
(ti, ui), i = 1, . . . , K − 1

)
is a history of a tree, say tK . We then set:

ψ△
K (hK) = h′

K . (5)

This ends the induction. It turns out that ψ△
K is a bijection, as stated in the next Lemma. Before

stating it, we introduce a notation: if hK =
(
(mi, fi), i = 1, . . . , K − 1

)
is a history of mK then

for any j < K, we let hj be
(
(mi, fi), i = 1, . . . , j − 1

)
the history restricted to the j − 1 first

steps: hj is the history of a map denoted by mj ; accordingly, we do the same for tree-histories.

Lemma 2. For any K ≥ 1, ψ△
K is a bijection between H△(K) and HT (K) such that:

(i) The family (ψ△
K , K ≥ 1) is consistent: if ψ△

K(hK) = h′
K then for any j < K,

ψ△
j (hj) = h′

j .

(ii) Robustness: h(1) and h(2) are two histories of m iff ψ△
K (h(1)) = ψ△

K (h(2)) are histories of
the same tree t.

This Lemma follows easily the construction of ψ△. Now, the point (ii) of this Lemma allows to

build an application Ψ△,⋆
K : △2K → T ter

3K−2 by associating mK with tK (this bijection Ψ△,⋆
K has

all the nice properties announced in Proposition 1).

Note 1. We may rephrase what we have done: take any history of a given map m, and construct
iteratively the corresponding ternary tree using ψ△. The last tree obtained does not depend on
the history chosen, but only on m.

Lemma 3. Let Ψ△
K : △2K → T ter

3K−2 the application defined above.

i) Ψ△,⋆
K is a bijection;

ii) Let t = Ψ△,⋆
K (m). The properties assertion (a), (b), (c), (d), (e) of Proposition (1) holds

true.

Proof. The application Ψ△,⋆
K is a bijection thanks to the previous Lemma (ii). To prove (ii) of

the present Lemma we introduce the notion of type of a face, and of a node (of a word on Σ3).
For any face (u, v, w) in m, define

type(u, v, w) := (dm(E0, u), dm(E0, v), dm(E0, w)) , (6)

the distance of u, v, w to the root-vertex of m. Since u, v, and w are neighbors, the type of any
triangle is (i, i, i), (i, i, i + 1), (i, i + 1, i + 1) for some i, or a permutation of this.

We then prolong the construction of Φ given above, and mark the nodes of t with the types of
the corresponding faces. For any internal node u′ ∈ t with type(u′) = (i, j, k),





type(u′1) = ( 1 + i ∧ j ∧ k, j, k ),
type(u′2) = ( i, 1 + i ∧ j ∧ k, k ),
type(u′3) = ( i, j, 1 + i ∧ j ∧ k )

(7)

as one can easily check with a simple figure: this corresponds as said above to the fact that if
the leaf u is associated with the “empty” triangle (A, B, C), then the insertion of a node x in
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E0 E1

E2

Figure 8: Construction of the ternary tree associated with an history of a stack-triangulation

(A, B, C) is translated by the insertion in the tree of the nodes u1 (resp. u2, u3) associated
with (x, B, C) (resp. (A, x, B), (A, B, x)). Formula (7) gives then the types of these three faces.
Using that type(∅) = (0, 1, 1), giving t the types of all nodes are known and are obtained via
the deterministic evolution rules (7). The distance of any internal node u to the root of m is
computed as follows: assume that u has been inserted at a certain date in a face f = (A, B, C).
Then clearly its distance to the root vertex is

dm(E0, u) = g(type(f)),

where g(i, j, k) = 1 + (i ∧ j ∧ k). Moreover, since an internal node in m corresponds to the
insertion of three children in the tree, each internal node u of m corresponds to an internal node
u′ of t and

dm(E0, u) = g(type(u′)).

It remains to check that for any u′ ∈ t,

g(type(u′)) = Λ(u′) (8)

as defined above. This is a simple exercise: the initial type (that of ∅) varies along a branch of
t only when a 1 occurs in the nodes. Then the type passes from (i, i, i) to (i + 1, i + 1, i + 1)
when the three letters 1, 2 and 3 has appeared: this corresponds to the incrementation of the
distance to the root in the triangulation. This leads to (c).

Note 2. The notion of type of a face f is canonical as we saw, when we proved that it is a
function of the ancestors of u = ψ△(f). Showing this property directly seems a bit ugly.

(d) Consider u and v two internal nodes of m. The node w′ = u′ ∧ v′ corresponds to the
smallest canonical face f = (A, B, C) containing u and v. Assume u′ = w′1 . . . and v′ = w′2 . . .,
then u and v belong respectively to the canonical faces (w, B, C) and (A, w, C). Therefore
there exists x ∈ {w, A, B, C} such that dm(u, v) = dm(u, x) + dm(v, x) which leads directly
to |dm(u, v) − (dm(u, w) + dm(v, w))| ≤ 2. The remaining cases are treated similarly. Let us
investigate now the relation between w and u and Λ(a1 . . . aj) in the case where u = wa1 . . . aj .
Each triangle appearing in the construction of m behaves as a copy of m except that its type is
not necessarily (i, i+1, i+1) (as was the type of ∅). Then the distance of the node u = wa1 . . . aj

to w may be not exactly Λ(a1 . . . aj). We now show that

|dm(w, u) − Λ(a1 . . . aj)| ≤ 1.
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This difference comes from the initialization of the counting of the non-overlapping subwords
from W1,2,3 in a1 . . . aj . This counting has to begin when a face of type (i, i, i) has been reached.
Since we no longer consider the distance between u and the root but between u and w, the
definition of the type has to be slightly modified. Let u = (A, B, C) be the canonical face
associated to w′a1 . . . aj , we define typew(u) as (dm(A, w), dm(B, w), dm(C, w)).

Let a = a1 . . . ak be a word on Σ3. Define τ ′
1(a) := 1, τ ′

2(a) := inf{i | i > 1, ai = a1, the rank
of the second apparition of a1 in a and τ ′

j(a) = τj(a) for j ≥ 3 (the definition of τj is given in
Equation (39)). Lastly we set

Λw(a) = max{i | τi(a) ≤ |a|}.

Let u = wa1 . . . aj , it is clear that dm(u, w) = Λw(a1 . . . aj) (see the proof of Property (c) of
Proposition 1). Furthermore for any word a on the alphabet Σ3,

|Λ(z) − Λw(z)| ≤ 1,

which concludes the proof.

(e) Let u be an internal vertex of m and let f = (A, B, C) be the canonical face containing u.
Let v be a vertex of m. Then dm(u, v) = 1 if v = A, B, C or if v′ = u′a1 . . . aj for a certain
a1 . . . aj ∈ W3. Assume a1 = 1. Then (ψ△)−1(u′a1) = (u, B, C). Now dm(u, v) = 1 if and only if
u is an adjacent vertex to (ψ△)−1(u′a1 . . . aj). Furthermore, such a face is of the form (u, B, y),
(u, x, y) or (u, x, C) meaning that a2 . . . aj ∈ {2, 3}⋆ (which can be done by induction). The two
remaining cases a1 = 2 and a1 = 3 are done in the same way. 2

2.4 Induced distribution on the set of ternary trees

The bijection Ψ△
K transports the distributions U△

2K and Q△
2K on the set of ternary trees T ter

3K−2.
1) First, the distribution

Uter

3K−2 := U△
2K ◦ (Ψ△

K)−1 (9)

is simply the uniform distribution on T ter

3K−2 since Ψ△
K is a bijection.

2) The distribution

Qter

3K−2 := Q△
2K ◦ (Ψ△

K)−1 (10)

is the distribution giving a weight to a tree proportional to its number of histories, that is the
number of histories of the corresponding triangulation.

We want to give here another representation of the distribution Qter

3K−2.

Definition 5. We call increasing ternary tree t = (T, l) a pair such that:
• T is the set of internal nodes of a ternary tree,
• l is a bijective application between T (viewed as a set of nodes) onto {1, . . . , |T |} such that l
is increasing along the branches (thus l(∅) = 1).

Notice that T is not necessarily a tree as defined in Section 2.3.1: for example T may be {∅, 2}.
Let Iter

K denotes the set of increasing ternary trees (T, l) such that |T | = K (i.e. T is the set of
internal nodes of a tree in T ter

3K+1).
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The number of histories of a ternary tree t ∈ T ter

3K−2 is given by the

wK−1(t
◦) = #{(t◦, l) ∈ Iter

K−1}

the number of increasing trees having t◦ as first coordinate, in other words, with shape t◦. Indeed
in order to record the number of histories of t an idea is to mark the internal nodes of t by their
apparition time, the root being marked 1. Hence the marks are increasing along the branches,
and there is a bijection between {1, . . . , K−1} and the set of internal nodes of t. Conversely, any
labeling of t◦ with marks having these properties corresponds indeed to a history of m. Thus

Lemma 4. For any K ≥ 1, the distribution Qter

3K−2 has the following representation

Qter

3K−2(t) = CK−1 · wK−1(t
◦), for any t ∈ T ter

3K−2

where CK−1 is the constant CK−1 :=
(∑

t′∈T ter

3K−2
wK−1(t

′◦)
)−1

.

3 Topologies

3.1 Topology of local convergence

The topology induced by the distance dL defined below will be called “topology of local conver-
gence”. Its aim is to describe an asymptotic behavior of maps (or more generally graphs) around
their root. We stress on the fact that no rescaling is involved in this part.

We borrow some considerations from Angel & Schramm [5]. Let M be the set of rooted maps
(m, e) where e = (E0, E1) is the distinguished edge of m. The maps from M are not assumed to
be finite, but only locally finite, i.e. the degree of the vertices are finite. For any r ≥ 0, denote
by Bm(r) the map having as set of vertices

V (Bm(r)) = {u ∈ V (m) | dm(u, E0) ≤ r},

the vertices in m with graph distance to E0 non greater than r, and having as set of edges, the
edges in E(m) between the vertices of V (Bm(r)).

For any m = (m1, e) and m′ = (m′, e′) in M set

dL(m, m′) = 1/(1 + k) (11)

where k is the supremum of the radius r such that Bm(r) and Bm′(r) are equals as rooted maps.
The application dL is a metric on the space M. A sequence of rooted maps converges to a
given rooted map m (for the metric dL) if eventually they are equivalent with m on arbitrarily
large combinatorial balls around their root. In this topology, all finite maps are isolated points,
and infinite maps are their accumulation points. The space M is complete for the distance dL

since given a Cauchy sequence of locally finite embedded rooted maps it is easy to see that it is
possible to choose for them embeddings that eventually agree on balls of any fixed radius around
the root. Thus, the limit of the sequence exists (as a locally finite embedded maps). In other
words, the space T of (locally finite embedded rooted) maps is complete.

The space of triangulations (or of quadrangulations) endowed with this metric is not compact
since one may find a sequence of triangulations being pairwise at distance 1. The topology on
the space of triangulations induces a weak topology on the linear space of measures supported
on planar triangulations.
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3.2 Gromov-Hausdorff topology

The other topology we are interested in will be the suitable tool to describe the convergence of
rescaled maps to a limiting object. The point of view here is to consider maps endowed with
the graph distance as metric spaces. The topology considered – called the Gromov-Hausdorff
topology – is the topology of the convergence of compact (rooted) metric spaces. We borrow
some considerations from Le Gall & Paulin [32] and from Le Gall [30, Section 2]. We send the
interested reader to these works and references therein.

First, recall that the Hausdorff distance in a metric space (E, dE) is a distance between the
compact sets of E; for K1 and K2 compacts in E,

dHaus(E)(K1, K2) = inf{r | K1 ⊂ Kr
2 , K2 ⊂ Kr

1}

where Kr = ∪x∈KBE(x, r) is the union of open balls of radius r centered on the points of K.
Now, given two pointed (i.e. with a distinguished node) compact metric spaces ((E1, v1), d1)
and ((E2, v2), d2), the Gromov-Hausdorff distance between them is

dGH(E1, E2) = inf{dHaus(E)(φ1(E1), φ2(E2)) ∨ dE(φ1(v1), φ2(v2))},

where the infimum is taken on all metric spaces E and all isometric embeddings φ1 and φ2 from
(E1, d1) and (E2, d2) in (E, dE). Let K be the set of all isometric classes of compact metric
spaces, endowed with the Gromov-Hausdorff distance dGH . It turns out that (K, dGH) is a
complete metric space, which makes it appropriate to study the convergence in distribution of
K-valued random variables.

The Gromov-Hausdorff convergence is then a consequence of any convergence of E′
n to E′

∞, when
E′

n and E′
∞ are some isomorphic embeddings of En and E∞ in a common metric space (E, dE).

In the proofs, we exhibit a space (E, dE) where this convergence holds; hence, the results of
convergence we get are stronger than the only convergence for the Gromov-Hausdorff topology.
In fact, it holds for a sequence of parametrized spaces.

4 Local convergence of stack-triangulations under U△
2n

We first begin by giving some information about Galton-Watson trees conditioned by the size.
These facts will be used also in Section 5.

4.1 Galton-Watson trees conditioned by the size

Consider νter := 2
3δ0 + 1

3δ3 as a (critical) offspring distribution of a Galton-Watson (GW) process
starting from one individual. Denote by P ter the law of the corresponding GW family tree; we
will also write P ter

n instead of P ter
(

.
∣∣ |t| = n

)
.

Lemma 5. P ter
3n+1 is the uniform distribution on T ter

3n+1.

Proof. A ternary tree t with 3n + 1 nodes has n internal nodes having 3 children and 2n + 1
leaves with degree 0. Hence P ter

3n+1({t}) = 3−n(2/3)2n+1/P ter(T ter
3n+1). This is constant on T ter

3n+1

and has support T ter
3n+1. 2
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The conclusion is that for any K ≥ 1

P ter

3K−2 = Uter

3K−2. (12)

Following (9), this gives us a representation of the uniform distribution on T ter

3K−2 in terms of
conditioned GW trees. This will be our point of view in the sequel of the paper.

We would like to point out that the number of ternary trees with a given number of nodes, as
well as the number of forests #Fr

ter(k) of ternary trees with r roots and a total number of nodes
K are well known:

#T ter

3K+1 =
1

3K + 1

(
3K + 1

K

)
and #Fr

ter(K) =
r

K

(
K

(K − r)/3

)
. (13)

These formulas are consequence of the so-called rotation/conjugation principle due to Raney, or
Dvoretzky-Motzkin (see Pitman [42], Section 5.1 for more information on this principle).

We now state some results concerning the local convergence of uniform ternary trees. The
limiting random tree will be used to build the limiting random maps, local limit of stacked-
triangulations.

4.2 Local convergence of uniform ternary trees

We endow T ter with the local distance dL defined in (11): instead of redefining an ad hoc metric
similar to dL on the set of planar trees, we identify the set of trees with the set of rooted planar
maps with one face (this is classical, and corresponds to the embedding of planar trees in the
plane respecting the cyclical order around the vertices). Under this metric, the accumulation
points of sequences of trees (tK) such that |tK | = 3K − 2 are infinite trees. It is known that
the sequence (P ter

3K−2) converges weakly for the topology of local convergence. Let us describe a
random tree tter

∞ under the limit distribution, denoted by P ter
∞ .

Let W3 be the infinite complete ternary tree and let (Xi) be a sequence of i.i.d. r.v. uniformly
distributed on Σ3. Define

Lter

∞ = (X(j), j ≥ 0) (14)

the infinite path in W3 starting from the root (∅) and containing the words X(j) := X1 . . . Xj

for any j ≥ 1. Take a sequence (t(i)) of GW trees under P ter and graft them on the neighbors
of Lter

∞ , that is on the nodes of W3 at distance 1 of Lter
∞ (sorted according to the LO). The tree

obtained is tter
∞ . In the literature the branch Lter

∞ is called the spine or the infinite line of descent

in tter
∞ .

Proposition 6. (Gillet [23]) When n → +∞, P ter
3n+1 converges weakly to P ter

∞ for the topology
of local convergence.

This result is due to Gillet [23, Section III] (see Theorems III.3.1, III.4.2, III.4.3, III.4.4).

Note 3. The distribution P ter
∞ is usually called “size biased GW trees”. We send the interested

reader to Section 2 in Lyons & al. [34] to have an overview of this object. In particular, this
distribution is known to be the limit for local convergence of critical GW trees conditioned by
the non extinction.
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4.3 Local convergence of stacked-triangulations

The first aim of this part is to define a map m∞ built thanks to tter
∞ with the help of a limiting

“bijection” analogous to the functions Ψ△
K ’s. Some problems arise when one wants to draw or

define an infinite map on the plane since we have to deal with accumulation points and possible
infinite degree of vertices. We come back on this point in Section 4.3.1. We now describe a
special class of infinite trees – we call them thin ternary trees – that will play an important role
further.

Definition 6. An infinite line of descent in a tree is a sequence (ui, i ≥ 0) such that: u0 is the
root ∅, and ui is a child of ui−1 for any i ≥ 1. We call thin ternary tree a ternary tree having a
unique infinite line of descent L = (ui, i ≥ 0), satisfying moreover Λ(un) −→

n
∞ (which will be

written Λ(L) = ∞). The set of thin ternary trees is denoted by T ter

thin
.

Lemma 7. The support of P ter
∞ is included in T ter

thin
.

Proof. By construction Lter
∞ is an infinite line of descent in tter

∞ that satisfies clearly a.s. Λ(Lter
∞ ) =

+∞. This line is a.s. unique because the sequence (t(i)) of grafted trees are critical GW trees
and then have a.s. all a finite size. 2

For any tree t, finite or not, denote the Λ−ball of t of radius r by

BΛ
r (t) := {u | u ∈ t, Λ(u) ≤ r}.

Lemma 8. For any tree t ∈ T ter

thin
and any r ≥ 0, #BΛ

r (t) is finite.

Proof. Let L be the unique infinite line of descent of t. Since Λ(L) = +∞, BΛ
r (t) contains only

a finite part say J∅, uK of L. This part is connected since Λ is non decreasing: if w = uv for two
words u and v then Λ(w) ≥ Λ(u). Using again that Λ is non decreasing, BΛ

r (t) is contained in
J∅, uK union the finite set of finite trees rooted on the neighbors of J∅, uK. 2

Proposition 9. If a sequence of trees (tn) converges for the local topology to a thin tree t, then
for any r ≥ 0 there exists Nr such that for any n ≥ Nr, BΛ

r (tn) = BΛ
r (t).

Proof. Suppose that this is not true. Then take the smallest r for which there does not exists
such a Nr (then r ≥ 1 since the property is clearly true for r = 0). Let lr be the length of the
longest word in BΛ

r (t). Since dL(tn, t) ≤ 1/(lr + 1) for n say larger than N ′
r, for those n the

words in tn and t with at most lr letters coincide. This implies that BΛ
r (t) ⊂ BΛ

r (tn) and that
this inclusion is strict for a sub-sequence (tnk

) of (tn). Hence one may find a sequence of words
wnk

such that: Λ(wnk
) = r, wnk

∈ tnk
, wnk

/∈ t. Let w′
nk

be the smallest (for the LO) elements

of (tnk
) with this property. In particular, the father wf

nk of w′
nk

satisfies either:

(a) Λ(wf
nk) = r − 1 or,

(b) Λ(wf
nk) = r and then wf

nk belongs to BΛ
r (t).

For n large enough, say larger than Nr−1, BΛ
r−1(tn) coincides with BΛ

r−1(t) (since r is the first

number for which this property does not hold). Hence, the set Sf = {wf
nk | nk ≥ Nr−1 ∧ N ′

r} ⊂
BΛ

r (t) is finite by the previous Lemma. Then the sequence (w′
nk

) takes its values in the set of
children of the nodes of Sf , the finite set say Sr. Consider an accumulation point p of (w′

nk
).

The point p is in the finite set {w′
nk

, k ≥ 0} and then not in t. But p is in t since t contains all
(finite) accumulations points of all sequences (xn), where xn ∈ tn. This is a contradiction. 2

1642



4.3.1 A notion of infinite map

This section is much inspired by Angel & Schramm [5] and Chassaing & Durhuus [13, Section
6].

We call infinite map m, the embedding of a graph in the plane having the following properties:

(α) it is locally-finite, that is the degree of all nodes is finite,

(β) if (ρn, n ≥ 1) is a sequence of points belonging to distinct edges of m, then accumulation
points of (ρn) are not on m (neither on the edges or on the vertices of m).

This last condition ensures that no face is created artificially. For example, we want to avoid
a drawing of an infinite graph where each node has degree 2 (an infinite graph line, in some
sense) that would create two faces or more, as would result by a drawing of this graph where the
two extremities accumulate on the same point. Avoiding the creation of artificial faces allows to
ensure that homeomorphisms of the plane are still the right tools to discriminate similar objects.

In the following we define an application Ψ△
∞ that associates with a tree t of T ter

thin
an infinite

map Ψ△
∞(t) of the plane. Before this, let us make some remarks. Let t ∈ T ter

thin
, for any r, set t(r)

the tree having as set of internal nodes BΛ
r = BΛ

r (t). We have clearly dL(t(r), t) →
r

0. Moreover,

since t(r) is included in t(r + 1), the map mr = (Ψ△)−1(t(r)) is “included” in mr+1. The quotes
are there to recall that we are working on equivalence classes modulo homeomorphisms and that
the inclusion is not really defined stricto sensu. In order to have indeed an inclusion, an idea is
to use the canonical drawing (see Definition 2) : the inclusion G(mr) ⊂ G(mr+1) is clear if one
uses a history leading to mr+1 that passes from mr, which is possible thanks to Property (i) of
Proposition 2 and the fact that t(r) ⊂ t(r + 1). Now (G(mr)) is a sequence of increasing graphs.
Let Gt be defined as the map ∪rG(mr) and having as set of nodes and edges those belonging to
at least one of the G(mr).

Proposition 10. For any thin tree t, the map Gt satisfies (α) and (β).

Proof. The first assertion comes from the construction and the finiteness of the balls BΛ
r

(by Lemma 8). For the second assertion, just notice that for any r, only a unique face of mr

contains an infinite number of faces of Gt. Indeed, t(r) is included in t and t owns only one
infinite line of descent L. Hence among the set of fringe subtrees {tu | u ∈ t(r)} of t (each of
them corresponding to the nodes that will be inserted in one of the triangular faces of mr) only
one has an infinite cardinality. It remains to check that the edges do not accumulate, and for
this, we have only to follow the sequence of triangles (Fk) that contains an infinite number of
faces, those corresponding with the nodes of L. Moreover, by uniqueness of the infinite line of
descent in t, the family of triangles (Fk) forms a decreasing sequence for the inclusion. Consider
now the subsequence Fnk

where g(type(Fnk
)) = g(type(Fnk−1

)) + 1. The triangle Fnk
has then

all its sides different from Fnk−1
. Hence any accumulation points ρ of (ρn) (as defined in (β))

must belong to ∩Fk. By the previous argument, ρ does not belong to any side of those triangles,
which amounts to saying that ρ lies outside m. 2

Proposition 11. Let (tn) be a sequence of trees, tn ∈ T ter
3n−2, converging for the local topology

to a thin tree t. Then the sequence of maps (Ψ△
n )−1(tn) converges to Gt for the local topology.
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Proof. If (tn) converges to t then for any r, there exists nr such that for any n ≥ nr, BΛ
r (tn) =

BΛ
r (t). Hence, if n is large enough, dL((Ψ△

n )−1(tn),Gt) ≤ 1/(r + 1). 2

We have till now, work on topological facts, separated in some sense from the probabilistic
considerations. It remains to deduce the probabilistic properties of interest.

4.3.2 A law on the set of infinite stack-maps

The set T ter is a Polish space for the topology dL. In such a space, Skorohod’s representation
theorem (see e.g. [27, Theorem 4.30]) applies. Since P ter

3n−2 converges to P ter
∞ , there exists a space

Ω on which are defined altogether t̃∞, t̃1, t̃2, . . . , such that t̃n ∼ P ter
3n−2 for any n, t̃∞ ∼ P ter

∞ ,

and such that t̃n
(a.s.)−−−→

n
t̃∞. Moreover, thanks to Lemma 7, t̃∞ is a.s. a thin tree.

We then work on this space Ω and use the almost sure properties of t̃∞. The convergence in
distribution of our theorem will be a consequence of the a.s. convergence on Ω.

Definition 7. We denote by P△
∞ the distribution of m∞ := Gt∞.

A simple consequence of Proposition 11 is the following assertion. Since dL(t̃n, t̃∞)
(a.s.)−−−→

n
0 then

dL

(
(Ψ△

n )−1(t̃n),G
t̃∞

)
(a.s.)−−−→

n
0. (15)

This obviously implies the following result.

Theorem 12. (U△
2n) converges weakly to P△

∞ for the topology of local convergence.

5 Asymptotic under the Gromov-Hausdorff topology

The asymptotic behavior of GW trees under P ter
n is very well studied. We focus in this section

on the limiting behavior under the Gromov-Hausdorff topology. The facts described here will
be used later in the proof of the theorems stating the convergence of stack-triangulations. In
addition we stress on the fact that the limit of rescaled stack-maps under the uniform distribution
is the same limit as the one of GW trees: the continuum random tree.

5.1 Gromov-Hausdorff convergence of rescaled GW trees

We present here the limit of rescaled GW trees conditioned by the size for the Gromov-Hausdorff
topology. We borrow some considerations from Le Gall & Weill [33] and Le Gall [30].

We adopt the same normalizations as Aldous [1; 2]: the Continuum Random Tree (CRT) T2e can
be defined as the real tree coded by twice a normalized Brownian excursion e = (et)t∈[0,1]. Indeed,
any function f with duration 1 and satisfying moreover f(0) = f(1) = 0, and f(x) ≥ 0, x ∈ [0, 1]
may be viewed as coding a continuous tree as follows (illustration can be found on Figure 9).
For every s, s′ ∈ [0, 1], we set

mf (s, s′) := inf
s∧s′≤r≤s∨s′

f(r).
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We then define an equivalence relation on [0, 1] by setting s ∼
f

s′ if and only if f(s) = f(s′) =

mf (s, s′). Finally we put
df (s, s′) = f(s) + f(s′) − 2 mf (s, s′) (16)

and note that df (s, s′) only depends on the equivalence classes of s and s′.

0 1s s′ t

f(s)

f(t)

mf (s, t)

Figure 9: Graph of a continuous function f satisfying f(0) = f(1) = 0 and f(x) ≥ 0 on [0,1].
In this example s ∼

f
s′ and the distance df (s, t) = df (s′, t) = f(s) + f(t) − 2mf (s, t) is the

sum of the lengths of the vertical segments.

Then the quotient space Tf := [0, 1]/ ∼
f

equipped with the metric df is a compact R-tree (see

e.g. Section 2 of [18]). In other words, it is a compact metric space such that for any two points
σ and σ′ there is a unique arc with endpoints σ and σ′ and furthermore this arc is isometric to a
compact interval of the real line. We view Tf as a rooted R-tree, whose root ρ is the equivalence
class of 0.

The CRT is the metric space (T2e, d2e). In addition to the usual genealogical order of the tree,
the CRT T2e inherits a LO from the coding by 2e, in a way analogous to the ordering of (discrete)
plane trees from the left to the right.

Discrete trees T are now equipped with their graph distances dT .

Proposition 13. The following convergence holds for the GH topology. Under P ter
3n+1,

(
T,

dT√
3n/2

)
(d)−−→
n

(T2e, d2e).

Proof. The convergence for the GH topology is a consequence of the convergence for any
suitable encoding of trees. The offspring distribution νter := 2

3δ0 + 1
3δ3 is critical (in other words

has mean 1) and variance 2. The convergence of rescaled GW trees conditioned by their size
is proved by Aldous [1; 2]. (See also Le Gall [30] or Marckert & Mokkadem [38], Section 6 of
Pitman [42]). 2

5.2 Gromov-Hausdorff convergence of stack-triangulations

We begin with a simple asymptotic result concerning the function Λ defined in Section 2.3.2.
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Lemma 14. Let (Xi)i≥1 be a sequence of random variables uniform in Σ3 = {1, 2, 3}, and
independent. Let Wn be the word X1 . . . Xn.

(i) n−1Λ(Wn)
(a.s.)−−−→

n
Λ△ where

Λ△ := 2/11. (17)

(ii) P(|Λ(Wn) − nΛ△| ≥ n1/2+u) →
n

0 for any u > 0.

Proof. If W is the infinite sequence (Xi), clearly τ2(W ) ∼ Geometric(1/3) and for i ≥ 3, the
(τi(W )−τi−1(W ))′s are i.i.d., independent also from τ2, and are distributed as 1+G1+G2 where
G1 ∼ Geometric(1/3) and G2 ∼ Geometric(2/3) [the distribution Geometric(p) is

∑
k≥1 p(1 −

p)k−1δk]. It follows that E(τi(W ) − τi−1(W )) = 11/2 for i ≥ 3 and E(τ2(W )) = 3 < +∞. By
the renewal theorem assertion (i) holds true. For the second assertion, write

{|Λ(Wn) − nΛ△| ≥ n1/2+u} = {τnΛ△+n1/2+u ≤ n} ∪ {τnΛ△−n1/2+u ≥ n}.

By the Bienaymé-Tchebichev inequality the probability of the events in the right hand side goes
to 0. 2

For every integer n ≥ 2, let Mn be a random rooted map under U△
2n. Denote by mn the set of

vertices of Mn and by dmn the graph distance on mn. We view (mn, dmn) as a random variable
taking its values in the space of isometric classes of compact metric spaces.

Theorem 15. Under U△
2n,

(
mn,

dmn

Λ△

√
3n/2

)
(d)−−→
n

(T2e, d2e),

for the Gromov-Hausdorff topology on compact metric spaces.

This theorem is a corollary of the following stronger Theorem stating the convergence of maps
seen as parametrized metric spaces. In order to state this theorem, we need to parametrize the
map Mn. The set of internal nodes of mn inherits of an order, the LO on trees, thanks to the
function Ψ△

n . Let u(r) be the rth internal node of mn for r ∈ {0, . . . , n−1}. Denote by dmn(k, j)
the distance between u(k) and u(j) in mn. We need in the following theorem to interpolate dmn

between the integer points to obtain a continuous function. Any smooth enough interpolation
is suitable. [For example, define dmn as the plane interpolation on the triangles with integer
coordinates of the form (a, b), (a + 1, b), (a, b + 1) and (a, b + 1), (a + 1, b + 1), (a + 1, b)].

Theorem 16. Under U△
2n,

(
dmn(ns, nt)

Λ△

√
3n/2

)

(s,t)∈[0,1]2

(d)−−→
n

(d2e(s, t))(s,t)∈[0,1]2 , (18)

where the convergence holds in C[0, 1]2 (even if not indicated, the space C[0, 1] and C[0, 1]2 are
equipped with the topology of uniform convergence).
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The proof of this Theorem is postponed to Section 9.1.

Proof of Theorem 15. To explain why Theorem 15 is a consequence of Theorem 16,
we introduce the notion of correspondence between two pointed compact metric spaces. Let
((E, v), d) and ((E′, v′), d′) be two pointed compact metric spaces. We say that R ⊂ E × E′ is
a correspondence between ((E, v), d) and ((E′, v′)d′) if (v, v′) ∈ R and for every x ∈ E (resp.
x′ ∈ E′) there exists y′ ∈ E′ (resp. y ∈ E) such that (x, y′) ∈ R (resp. (x′, y) ∈ R). The
distorsion of R is defined by

dis(R) = sup
{
|d(x, y) − d′(x′, y′)| : (x, x′), (y, y′) ∈ R

}
.

It has been proved in [19] that

dGH(E, E′) =
1

2
inf{dis(R) : R ∈ C}, (19)

where C denotes the set of all correspondences between ((E, v), d) and ((E′, v′), d′).

Let mn be a uniform stack-triangulation with 2n faces. Then one can construct a correspondence
Rn between ((mn, E0), dmn/Λ△

√
3n/2) and a continuous tree T2e thanks to the parametrization

of mn, that is
Rn = {(u(ns), s) ∈ mn × T2e : s ∈ [0, 1]}.

Now using Theorem 16, by Skorohod’s representation theorem there exists a space Ω where a

copy d̃mn of dmn , and a copy d̃2e of d2e satisfies ˜dmn

(a.s.)−−−→
n

d̃2e in C[0, 1]2. On this space the

correspondence dis(R̃n) = sup{|d̃mn(ns, nt)/Λ△

√
3n/2 − d̃2e(s, t)| : (s, t) ∈ [0, 1]2}. On the

space Ω, a.s. dis(R̃n) → 0, which implies Theorem 15 (together with (19)). 2

The profile Profm := (Profm(t), t ≥ 0) of a map m with root vertex E0 is the càdlàg-process

Profm(t) = #{u ∈ V (m) | dm(E0, u) ≤ t}, for any t ≥ 0.

The radius R(m) = max{dm(u, E0) | u ∈ V (m)} is the largest distance to the root vertex in m.

As a corollary of Theorem 15 or Theorem 16, we have:

Corollary 17. Under U△
2n, the process

(
n−1 Profmn(Λ△

√
3n/2 v)

)
v≥0

(d)−−→
n

(∫ v

0
lx2edx

)

v≥0

(20)

where lx2e stands for the local time of twice the Brownian excursion 2e at position x at time 1,
and where the convergence holds in distribution in the set D[0, +∞) of càdlàg functions endowed
with the Skorohod topology. Moreover

R(mn)

Λ△

√
3n/2

(d)−−→
n

2 max e

Proof. Let Dn(s) = dmn (ns,0)

Λ△

√
3n/2

be the interpolated distance to E0. By (18), (Dn(s))s∈[0,1]
(d)−−→
n

(2e(s))s∈[0,1] in C[0, 1]. By Skorohod’s representation theorem there exists a space Ω where a
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copy D̃n of Dn, and a copy ẽ of e satisfies D̃n
(a.s.)−−−→

n
2ẽ in C[0, 1]. We work from now on on this

space, and write P̃rofn the profile corresponding to D̃n. For any v such that Λ△

√
3n/2 v is an

integer,

n−1P̃rofn(Λ△

√
3n/2 v) =

∫ 1

0
1D̃n(s)≤v ds.

For every v, a.s.,
∫ 1
0 1D̃n(s)≤v ds →

∫ v
0 lx2ẽ dx. To see this, take any ε > 0 and check that

‖D̃n − 2ẽ‖∞ → 0 yields

∫ 1

0
12ẽ(s)≤v−ε ds ≤

∫ 1

0
1D̃n(s)≤v ds ≤

∫ 1

0
12ẽ(s)≤v+ε ds. (21)

Since the Borelian measure µ2e(B) =
∫ 1
0 12e(s)∈B ds has no atom a.s., v →

∫ v
0 lx2edx is continuous

and non-decreasing. Hence since v →
∫ 1
0 1Dn(s)≤v ds is non decreasing and by (21) we have∫ 1

0 1Dn(s)≤v ds →
∫ v
0 lx2e dx a.s. for any v ≥ 0. Thus, (v →

∫ 1
0 1Dns≤v ds) → (v →

∫ v
0 lx2e dx) in

C[0, 1]. This yields the convergence of Profmn as asserted in (20).

For the second assertion, note that f → max f is continuous on C[0, 1]. Since D̃n
(a.s.)−−−→

n
2ẽ then

max D̃n
(a.s.)−−−→

n
max 2e, and then also in distribution. 2

6 Asymptotic behavior of the typical degree

The results obtained in this part are summed up in the following Proposition.

Proposition 18. Let mn be a map U△
2n distributed, u(1) the first node inserted in mn, and u

be a random node chosen uniformly among the internal nodes of mn.

(i) degmn
(u(1))

(d)−−→
n

X where for any k ≥ 0, P(X = k + 3) = k
k+3

(
2k+2

k

)
2k+3

32k+3 ,

(ii) degmn
(u)

(d)−−→
n

Y where for any k ≥ 0, P(Y = k + 3) = 1
k+3

(
2k+2

k

)
2k+3

32k+2 .

The (ii) point has been shown by Darrasse & Soria [16], in the case of a model of stack-
triangulations under a Boltzmann model. Assertion (ii) follows nevertheless their work, and
a technical lemma saying that in a Galton-Watson tree t conditioned to have a total size n
with offspring distribution νter, the fringe subtree tu taken at a random node u, converges
in distribution to a Galton-Watson tree under νter (with no conditioning) when n → +∞.
This argument should be detailed in a forthcoming work of Darrasse & Soria. We give below
an elementary proof of this Lemma avoiding the Boltzmann distribution, and the generating
function.

Lemma 19. Let T be a random tree under Uter
3n+1 and u be chosen uniformly in T ◦. We have

|Tu|
(d)−−→
n

K where P(K = 3k + 1) = 22k+1

33k(3k+1)

(
3k+1

k

)
, for k ≥ 1. Moreover, conditionally on

|Tu| = m, Tu has the uniform distribution in T ter
m .
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Note 4. There are several ways to check that the limiting sequences in Proposition 18 and
Lemma 19 define indeed some probability distributions. One may use an approach using gener-
ating functions. Alternatively, one may use probabilistic arguments.

For the sum in the Lemma, proceed as follows: Consider the family tree of a Galton-Watson
process with the critical offspring distribution νter starting from one individual. Each of the

1
3k+1

(
3k+1

k

)
ternary trees having 3k+1 nodes, has weight 22k+1

33k+1 under this law. The a.s. extinction

of this Galton-Watson process rewrites
∑

k≥1
22k+1

33k(3k+1)

(
3k+1

k

)
= 1.

Using the same idea, check that
∑

k≥0
3

2k+3

(
2k+3

k

)
2k+3

32k+3 is the extinction probability of a binary
Galton-Watson process with offspring distribution µ(0) = 2/3 and µ(2) = 1/3, starting with 3
individuals: since it is sub-critical, this probability is 1.

A probabilistic proof of
∑

k≥1
k

k+3

(
2k+2

k

)
2k+3

32k+3 = 1 runs as follows: one checks that this sum

equals 1
3

∑
k≥0 P(S2k+4 = −4) where Sj is a sum of j i.i.d. random variables taking values −1

or +1 with probability 2/3 and 1/3. Then
∑

k≥0 P(S2k+4 = −4) = E(
∑

j 1Sj=−4) is the mean
time passed by the random walk S, at position −4: the identity is exact since −4 can be reached
only at even dates. But the mean sojourn time in a given position with negative ordinate is 3,
since the drift of the random walk is −1 × (2/3) + 1 × (1/3) = −1/3.

Proof of Lemma 19. Consider

T ter⋆
3n+1 := {(t, u) | t ∈ T ter

3n+1, u ∈ t◦}, T ter•
3n+1 := {(t, u) | t ∈ T ter

3n+1, u ∈ ∂t}

the set of ternary trees with a distinguished internal node, resp. leaf. For any tree t and
u ∈ t set t[u] = {v ∈ t | v is not a descendant of u}. Each element (t, u) of T ter⋆

3n+1 can be
decomposed bijectively as a pair [(t[u], u), tu] where (t[u], u) is a tree with a marked leaf, and tu
is a ternary tree having at least one internal node. Hence, for any n, the function ρ defined by

ρ(t, u) := [(t[u], u), tu] is a bijection from T ter⋆
3n+1 onto

⋃n
k=1

(
T ter•

3(n−k)+1 × T ter

3k+1

)
.

Since the trees in T ter
3n+1 have the same number of internal nodes, choosing a tree T uniformly in

T ter
3n+1 and then a node u uniformly in T ◦, amounts to choosing a marked tree (T, u) uniformly

in T ter⋆
3n+1. We then have, for any fixed k,

Uter

3n+1(|Tu| = 3k + 1) = #T ter•
3(n−k)+1#T ter

3k+1

(
#T ter⋆

3n+1

)−1
. (22)

When n → +∞, this tends to the result announced in the Lemma, using (13), #T ter•
3m+1 =

(2m + 1)#T ter
3m+1 and #T ter⋆

3n+1 = n#T ter
3n+1 and

#T ter

3n+1 =
1

3n + 1

(
3n + 1

n

)
∼

√
3

π

33n

22n+2n3/2
. (23)

To conclude that we have indeed a convergence in distribution of degT (u) under Uter
3n+1 to K,

we use that the limit sums to 1 (see Note 4). The second assertion of the Lemma is clear. 2

Proof of Proposition 18. As illustrated on Figure 10, for any t ∈ T ter, we let

tdeg := {v | v ∈ t, v ∈ 1{2, 3}⋆ ∪ 2{1, 3}⋆ ∪ 3{1, 2}⋆}.

In general tdeg is a forest of three pseudo-trees: pseudo here means that the connected compo-
nents of tdeg have a tree structure but do not satisfies the first and third points in Definition
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Figure 10: A ternary tree t and tdeg. Plain vertices belong to tdeg.

3. For sake of compactness, we will however up to a slight abuse of language call these three
pseudo-trees, binary trees (combinatorially their are binary trees).

(i) Let T be a tree Uter
3n−2 distributed and m = (Ψ△

n )−1(T ). By Property (iii) of Proposition 1,

degm(u(1)) = 3 + #(T deg ∩ T ◦), (24)

or in other words U△
2n(deg(u(1) = k + 3) = Uter

3n−2(|T deg| = 2k + 3). Each ternary tree t
not reduced to the root vertex can be decomposed in a unique way as a pair (tdeg, f) where
f := (t(1), . . . , t(k)) ∈ (T ter)k is a forest of ternary trees, and k = #(tdeg ∩ t◦). Let Fn

bin
(k) (resp

Fn
ter(k)) be the set of forests composed with n binary (resp. ternary) trees and total number of

nodes k. For 0 ≤ k < n − 1, we get:

Uter

3n−2(|T deg| = 2k + 3) =
#F3

bin
(2k + 3)#Fk

ter(3n − 2k − 6)

#T ter
3n−2

. (25)

A well known consequence of the rotation/conjugation principle (see Pitman [42] Section 5.1) is
that

#Fm
bin(n) =

m

n

(
n

(n − m)/2

)
, and #Fm

ter(n) =
m

n

(
n

(n − m)/3

)
(26)

with the convention that
(
a
b

)
is 0 if b is negative or non integer. We then have

Uter

3n−2(|T deg| = 2k + 3) =
3

2k+3

(
2k+3

k

)
k

3n−2k−6

(
3n−2k−6
n−k−2

)

1
3n−2

(
3n−2
n−1

) . (27)

We get U△
2n(degmn

(u(1)) = k + 3) →
n

k
k+3

(
2k+2

k

)
2k+3

32k+3 , limit which is indeed a probability distri-

bution (see Note 4).

(ii) Now let mn be U△
2n distributed and u be a uniform internal node of mn. Let T = Ψ△(mn)

and u′ be the internal node of T corresponding to u. We have this time U△
2n(degm(u) = k+3) =

Uter
3n−2(|T

deg
u′ | = 2k + 3). First by a simple counting argument,

Uter

3n−2

(
|T deg

u′ | = 2k + 3
∣∣ |Tu′ | = 3j − 2

)
= Uter

3j−2

(
|T deg| = 2k + 3

)
.

Conditioning on |Tu′ |, using Formulas (22) and (27) we get after simplification

qn,k := Uter

3n−2

(
|T deg

u′ | = 2k + 3
)

=
∑

j≥k+2

qn,k,j (28)

1650



where

qn,k,j = (1j≤n)
3

2k + 3

(
2k + 3

k

) k
3j−2k−6

(
3j−2k−6
j−k−2

)(
3(n−j)

n−j

)
(
3n−3
2n−1

) .

We have limn

(
3(n−j)

n−j

)
/
(
3n−3
2n−1

)
= 22j−1/33j−3, and thus

∞∑

j≥k+2

lim
n

qn,k,j = q̃k :=
3

2k + 3

(
2k + 3

k

)
2k+3

32k+3
, (29)

which is the probability distribution announced to be the limit of qn,k. To end the proof we have
to explain why the exchange limn and

∑
j≥k+2 is legal.

By Fatou’s lemma, for any k one has

lim sup
n

qn,k = qk ≥ qk = lim inf
n

qn,k ≥ q̃k.

Since (q̃k) is a probability distribution,
∑

q̃k = 1. And clearly for any K, q1 + · · · + qK =
lim supn qn,1 + · · · + qn,K ≤ 1. Hence, we have that

∑
qk = 1 (it is greater than

∑
q̃k = 1 and

smaller than 1), this implies that
∑

qk =
∑

qk =
∑

q̃k = 1 and then for any k, qk = qk = q̃k

and then limk qk exists and is q̃k. 2

7 Asymptotic behavior of stack-triangulations under Q△
2n

We first present a result concerning ternary trees under Qter
3n−2.

Proposition 20. Let t be a random tree under Qter
3n−2, and u and v be two nodes chosen uni-

formly and independently in t◦; let w = u ∧ v be their deepest common ancestor.

1) We have
(

3
2 log n

)−1/2 (
|u| − 3

2 log n, |v| − 3
2 log n

) (d)−−→
n

(N1, N2) where N1 and N2 are inde-

pendent centered Gaussian r.v. with variance 1.
2) Let a0 . . .ak and b0 . . .bl be the unique words such that u = wa0 . . .ak and v = wb0 . . .bl.
Set

u⋆ = a1 . . .ak and v⋆ = b1 . . .bl.

Conditionally to (|u⋆|, |v⋆|) (their lengths) u⋆ and v⋆ are independent random words composed
with |u⋆| and |v⋆| independent letters uniformly distributed in Σ3 = {1, 2, 3}.
3) For any an → +∞, we have |w|/an

proba.−−−−→
n

0.

[Notice that in the second assertion, the words a0 . . .ak and b0 . . .bl may be empty.]

The following theorem may be considered as the strongest result of this section. As explained
in its proof, it is an immediate consequence of Proposition 20.

Theorem 21. Let Mn be a stack-triangulation under Q△
2n. Let k ∈ N and v1, . . . ,vk be k nodes

of Mn chosen independently and uniformly among the internal nodes of Mn. We have
(

DMn(vi,vj)

3Λ△ log n

)

(i,j)∈{1,...,k}2

proba.−−−−→
n

(1i6=j)(i,j)∈{1,...,k}2

The matrix (1i6=j)(i,j)∈{1,...,k}2 is the matrix of the discrete distance on a set of k points.
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This is consistent with the computations of Zhou [47] and Zhang & al [45].

Proof. The convergence stated in the theorem is equivalent to the (in appearance weaker)
following statement: if v1 and v2 are two i.i.d. uniform random internal nodes in Mn, then

DMn(v1,v2)

3Λ△ log n

proba.−−−−→
n

1.

Now, consider t := Ψ△(Mn) and write

|DMn(v1,v2) − Λ(v′
1,v

′
2)| ≤ 4

(by (3)) where v′
1 and v′

2 are the internal nodes corresponding to v1 and v2 by the bijection
Ψ△. Notice that v′

1 and v′
2 are i.i.d. uniform in t◦. Now write,

|Λ(v′
1,v

′
2) − Λ(v′

1
⋆) − Λ(v′

2
⋆)| ≤ 2

and use Proposition 20 : asymptotically v1
′⋆ and v2

′⋆ have each of them a length around
3 log n/2 (more precisely P(|v′

i
⋆ − 3/2 log n| ≥ ε log n) → 0 for i ∈ {1, 2} and any ε > 0) and the

letters of v1
′⋆ and v2

′⋆ are independent. A simple application of Lemma 14 gives the result. 2

We now focus on Proposition 20 and on its proof. This Proposition is more or less part of the
folklore. Bergeron & al [6], in particular in Theorem 8 and Example 1 p.7, proved that

(
3

2
log n

)−1/2 (
|u| − 3

2
log n

)
(d)−−→
n

N1. (30)

Below we present a formal proof of this proposition using a “Poisson-Dirichlet fragmentation”
point of view, very close to that used in Broutin & al. [12, Section 7] where the height of
increasing trees is investigated. They show that in increasing trees the asymptotic proportion
n−1(|t1|, . . . , |td|) of nodes in the subtrees of the root are given by a Poisson-Dirichlet distribution.
The point of view developed below is different in nature, since we first take a Poisson-Dirichlet
fragmentation and then show that the fragmentation tree is distributed as an increasing tree,
leading then at once to the convergence of n−1(|t1|, . . . , |td|). The following Subsection is mostly
contained in the more general work of Dong & al. [17] (particularly Section 5). We give a
straight exposition below for the reader convenience, in a quite different vocabulary.

7.1 Poisson-Dirichlet fragmentation

We construct here a representation of the distribution Q△
3K−2 as the distribution of the underlying

tree of a fragmentation tree. Let begin with the description of the deterministic fragmentation
tree associated with a sequence of choices b = (bi)i≥1, bi ∈ [0, 1] and a sequence y = (yu)u∈W3 =
(yu

1 , yu
2 , yu

3 )u∈W3 indexed by the infinite complete ternary tree W3 =
⋃

n≥0{1, 2, 3}n, where for

any i ∈ {1, 2, 3} and u ∈ W3, yu
i > 0 and

∑3
i=1 yu

i = 1. The sequence (yu) may be thought as
the fragmentation structure associated with the tree.

With these two sequences we associate a sequence Fn = F (n,b,y) of ternary trees with 3n + 1
leaves, where each node is marked with an interval as follows.
– At time 0, F0 is the tree {∅} (reduced to the root) marked by I∅ = [0, 1).
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– Assume now that Fi is built, and is a ternary tree with 3i + 1 nodes each marked with an
interval included in [0, 1), and such that the leaves-intervals (Iu, u ∈ ∂Ti) form a partition of
[0, 1). Then the tree Fi+1 is obtained from Fi as follows. Consider u⋆ the leaf whose associated
interval Iu⋆ contains bi+1. Give to u⋆ the 3 children u⋆1, u⋆2, u⋆3. Now split the interval Iu⋆

into (Iu⋆1, Iu⋆2, Iu⋆3) with respective size proportions given by yu⋆
: if Iu⋆ = [a, b) then set

Iu⋆i = [a + (b − a)
∑i−1

j=1 yu⋆

j , a + (b − a)
∑i

j=1 yu⋆

j ) for every i ∈ {1, 2, 3}. Let ΩF be the set of
fragmentation trees (a tree where each node is marked by an interval). We define the projection
π from ΩF to T ter as the application sending a fragmentation tree F to its underlying tree π(F ),
that is the tree F without marks.

We now let b and y be random. For d ≥ 2 consider the simplex

∆d−1 =

{
x = (x1, . . . , xd) | xi ≥ 0 for every i ∈ {1, . . . , d} and

d∑

i=1

xi = 1

}
.

The d − 1-dimensional Dirichlet distribution with parameter α ∈ (0, +∞), denoted Dird−1(α),
is the probability measure (on ∆d−1) with density

µd,α(x1, . . . , xd) :=
Γ(dα)

Γ(α)dΓ(d)
xα−1

1 . . . xα−1
d (31)

with respect to dSd the uniform measure on ∆d−1.

Consider the following discrete time process (Fn) where Fn = F (n,B,Y), B is a sequence of
i.i.d. random variables uniform on [0, 1], and Y = (Y u)u∈Wd

is a sequence of i.i.d. r.v. with
Dird−1(α) distribution (independent from B), with d = 3, and α = 1

d−1 = 1/2. When like
here, the choice of the interval that will be fragmented is equal to the size of the fragment, the
fragmentation is said to be biased by the size.

Proposition 22. If d = 3 and α = 1
d−1 for any K ≥ 1 the distribution of π(FK) is Qter

3K+1.

Note 5. The construction done in the ternary case, can be extended in the d-ary case without
any problem (with d ≥ 2). The distribution of the underlying fragmentation tree corresponding to
the Dirichlet distribution µd,α with α = 1

d−1 is a distribution on d-ary tree similar to Qter

3K+1: it
corresponds to d-ary increasing trees, and can also be constructed thanks to successive insertions
of internal nodes uniformly on the existing leaves.

Proof. Denote by PF
3K+1 the distribution of π(FK) and t(K) a r.v. having this distribution.

Knowing Y ∅ = (Y ∅

1 , Y ∅

2 , Y ∅

3 ), the distribution of the vector (|t(K)
1

◦|, |t(K)
2

◦|, |t(K)
3

◦|) giving
the size of the subtrees of t(K) is multinomial (K − 1, Y ∅

1 , Y ∅

2 , Y ∅

3 ); indeed for i ∈ {1, 2, 3},
|t(K)

i
◦| = #{l ∈ {1, . . . , K −1} |Bl ∈ Ii} where Ii = [

∑i−1
j=1 Y ∅

j ,
∑i

j=1 Y ∅

j ). Let us integrate this.
We have

PF
3K+1({t | |t◦i | = ki, i ∈ {1, 2, 3}}) =

∫

∆2

(
K − 1

k1, k2, k3

)
xk1

1 xk2
2 xk3

3 µ3, 1
2
(x1, x2, x3)dS3(x1, x2, x3)

(32)
for any non negative integers k1, k2, k3 summing to K − 1. This leads to

PF
3K+1({t | |t◦i | = ki, i ∈ {1, 2, 3}}) =

(
K − 1

k1, k2, k3

)
Γ(3/2)

Γ(1/2)3

∏3
i=1 Γ(ki + 1/2)

Γ(k1 + k2 + k3 + 3/2)
. (33)
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The comparison with Qter is done as follows. Let count the number of constructions leading to
a tree t such that |t◦i | = ki, i ∈ {1, 2, 3}. The sum of the number of histories of the trees with
m internal nodes is Nm :=

∏m−1
i=0 (2i + 1) since at each step of the history, we choose one leaf of

the tree and at the k-th step, the tree has 2k + 1 leaves. Hence

Qter

3K+1({t | |t◦i | = ki, i ∈ {1, 2, 3}}) =

(
K − 1

k1, k2, k3

)∏3
i=1 Nki

NK
.

Since
Γ(ki + 1/2) = 2−kiNkiΓ(1/2)

and
Γ(k1 + k2 + k3 + 3/2) = 2−k1−k2−k3Nk1+k2+k3+1Γ(3/2),

and after simplification, we check that Qter

3K+1({t | |t◦i | = ki, i ∈ {1, 2, 3}}) = PF
3K+1({t | |t◦i | =

ki, i ∈ {1, 2, 3}}), that is the size of the subtrees of the root have the same distribution under
Qter

3K+1 or under PF
3K+1.

To conclude the proof of the proposition, we use a recursive argument, by conditioning on the
subtree sizes. Fix k1, k2, k3 summing to K − 1, and consider the law of (t◦1, t

◦
2, t

◦
3) conditionally

on {|t◦i | = ki, i ∈ {1, 2, 3}} under Qter

3K+1, and next under PF
3K+1. One then checks easily that

under this conditioning and under each law, the subtrees (t◦1, t
◦
2, t

◦
3) is a vector of independent

random variables, and have respectively the law Qter

3k1+1×Qter

3k2+1×Qter

3k3+1 and PF
3k1+1×PF

3k2+1×
PF

3k3+1 (the fundamental reason for the fragmentation case is that independent random variables
U1, . . . , Uk conditioned to belong to an interval I are again independent and uniform in I). 2

Proof of Proposition 20. Let r fixed, and let n > r. Let us examine the probability that w

is not in t(r) = π(Fr). Conditionally on I(r) := (Iu, u ∈ t(r)) the vector size (|t(n)
u

◦|, u ∈ ∂t(r)),
giving the number of internal nodes in the fringe subtrees of t(n) at the leaves of t(r), has the
multinomial (n − r, (|Iu|, u ∈ ∂t(r))) distribution. The event {w /∈ t(r)◦} is equal to the event

Er := {u and v belong to the same subtree of the family (t(n)
u

◦, u ∈ ∂t(r))}.

Knowing I(r) the probability of Er is
∑

u∈t(r) |Iu|2 ≤ max |Iu|
∑

u∈t(r)) |Iu| = max |Iu|, since this
event occurs only if the two variables uniform bi corresponding to u and v belong to the same
interval Iu. Hence

P(|w| ≥ r) ≤ P(w /∈ t(r)◦) ≤ E

(
max

u∈∂t(r)
|Iu|

)
−→

r→+∞
0 (34)

since in a size biased fragmentation process where the fragmentation measure does not charge
0, the maximal size of the fragments goes a.s. to 0 when the time → +∞. Property (3) follows.

We now prove (1). By the strong long of large number, knowing I(r),

∀u ∈ ∂t(r),
|t(n)

u
◦|

n

(a.s.)−−−→
n

|Iu| (35)

and then one will assume now that N is chosen such that for any n ≥ N , |t
(n)
u

◦|
n ∈ [|Iu|/2, 2|Iu|]

for any u ∈ ∂t(r) (the lengths |Iu| are a.s. all non zero). Again, conditionally to their sizes
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(|t(n)
u

◦|, u ∈ ∂t(r)) = (s1, . . . , s2r+1), the trees (t
(n)
u

◦, u ∈ ∂t(r)) are independent trees, the ith
having the law Qter

si
.

Consider the event Er,ε := {max I(r) < ε} . As said above, for any ε′ > 0, any ε > 0, if r is
large enough, P(Er,ε) ≥ 1 − ε′. Let us condition by Er,ε, and let us choose u and v in t(n)◦,
with n > N . With probability close to 1 (under Er,ε), the random nodes u and v belong to two

different subtrees |t(n)
w

◦| and |t(n)
w′

◦| for {w, w′} ⊂ ∂t(r); in this case, their distance in t(n) is, up

to 2, the sum of their respective height in |t(n)
w

◦| and |t(n)
w′

◦|. Let us condition additionally on w

and w′. Knowing that u is in |t(n)
w

◦|, u is uniform in this tree. By the characterization of the

law of t
(n)
w

◦ conditionally to its size an := |t(n)
w

◦|, and (30), we get

(
3

2
log an

)−1/2

(u − 3

2
log an)

(d)−−→
n

N1; (36)

Since conditionally on I(r) , for any n large enough an ∈ [|Iw|n/2, 2|Iw|n], then

(
3

2
log n

)−1/2

(w − 3

2
log n)

(d)−−→
n

N1, (37)

and the same hold for v, the limiting variable being noted N2. Since conditionally to their

size, t
(n)
w

◦ and t
(n)
w′

◦ are independent, the distance between u and v is conditionally to these
sizes, independent. Since this independence holds whatever are w and w′, and since the limit

of (
(

3
2 log n

)−1/2
(u− 3

2 log n),
(

3
2 log n

)−1/2
(v− 3

2 log n)) is (N1, N2) with N1, N2 i.i.d. Gaussian

N(0, 1), whatever are w 6= w′ fixed in t(r), (i) holds true.

Property (ii) follows a simple symmetry argument. 2

We give now some indications about the limiting behavior of triangulations under the law Q△
2n.

7.2 Some features of large maps under Q△

Some asymptotic results allowing to understand the behavior of large maps under Q△ can also
be proved using the fragmentations processes. In particular using that the size of a subtree
rooted on a given node u evolves (asymptotically) linearly in time (this is due, as said before,
to the rate of insertions of nodes in Tu which is constant and given by |Iu|), the same results
holds true for a fixed face in the triangulation. Moreover, the length |Iu| is the product of |u|
marginals of Poisson-Dirichlet random variables. Hence Nn(f) the number of internal nodes
present in the canonical face f at time n behaves as follows: n−1Nn(f) converges a.s. toward
a random variable Nf almost surely in (0, 1). This fragmentation point of view allows to prove
much more : the a.s. joint convergence of n−1(Nf1 , . . . , Nfk

) for the (disjoint or not) faces fi

of mj toward a limiting random variable taking its value in Rk, and whose limiting distribution
may be described in terms of product of Poisson-Dirichlet random variables.

The degree of a node may also be followed when n goes to +∞. If v(j) denotes the jth node
inserted in mn, one may prove that deg(v(j)) goes to infinity with n. The degree of a node
follows indeed a simple Markov chain since it increases if and only if a node is inserted in a face
adjacent to v(j) and this occurs with a probability equals to deg(v(j)) divided by the current
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number of internal faces. Denoting by Dn
j the degree of deg(v(j)) at time n (recall that Dj

j = 3),

under Q△
2n, we have that for n > j and k ≥ 3, conditionally on Dn

j

Dn+1
j = Dn

j + B
(
Dn

j /(2n − 1)
)

(38)

where we have denoted by B(p) a Bernoulli random variable with parameter p (in other words

Q△
2(n+1)(deg(v(j)) = k + 1) = k

2n−1Q△
2n(deg(v(j)) = k) + 2n−k−2

2n−1 Q△
2n(deg(v(j)) = k + 1)).

This chain has the same dynamics as the following simple model of urn. Consider an urn with
3 white balls and 2j − 2 black balls at time 0. At each step pick a ball and replace it in the urn.
If the picked ball is white then add one white ball and one black ball, and if it is black, add two
black balls. The number N t

j of white balls at time t has the same law as Dj+t
j (the number of

black balls behaves as the number of finite faces of mj+t not incident to v(j)). This model of
urn has been studied in Flajolet & al. [22, p.94] (to use their results, take a0 = 3, b0 = 2j − 2,
σ = 2, α = 1 and replace n by n − j). For example, we derive easily from their results the
following proposition.

Proposition 23. Let mn be a map Q△
2n distributed and v(j) the j-th node inserted, for n > j

and 1 ≤ k ≤ n − j, we get

Q△
2n(degmn(v(j)) = k + 3) =

Γ(n − j + 1)Γ(j + 1
2)

Γ(n + 1
2)

(
k + 2

k

) k∑

i=0

(−1)i

(
k

i

)(
n − i

2 − 2

n − j

)

where
(
a
b

)
= a(a − 1) . . . (a − b + 1)/b!.

This model of urns has also been studied by Janson [26]; Theorem 1.3 in [26] gives the asymptotic
behavior of urns under these dynamics, depending on the initial conditions. The discussion given
in Section 3.1 of [26] shows that the asymptotic behavior of Dj(n) is quite difficult to describe.
One may use (38) to see that E(Dn+1

j | Dn
j ) = Dn

j (1 + 1
2n−1) to show that (Mn

j )n≥j defined by

Mn
j = Dn

j /un

is a Fn martingale, where Fn = σ(Dk
j , j ≤ k ≤ n) for any sequence un such that un+1 =

un(2n)/(2n − 1). This allows to see that

E(Dn
j ) = E(Dj

j)
n−1∏

k=j

(2k)/(2k − 1) = 3
n−1∏

k=j

(2k)/(2k − 1).

This indicates that for a fixed j the expectation E(Dn
j ) grows as

√
n. Some other regimes may

be obtained: for t ∈ (0, 1), E(Dn
nt) → 3(1 − t)−1 when n goes to +∞. (We recall that any

triangulation with 2n faces has 3n edges and n + 2 nodes; hence the mean degree of a node in
6n/(n + 2) in any triangulation).

8 Two families of increasing quadrangulations

We present here two families of quadrangulations. The first one, quite natural, resists to our
investigations. The second one, that may appear to be quite unnatural, is in fact very analogous
to stack-triangulations, and is studied with the same tools.
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8.1 A first model of growing quadrangulations

This is the simplest model, and we present it rapidly: the construction starts from a rooted
square. Assume that a quadrangulation has yet be constructed. Choose a finite face f =
(A, B, C, D) and a diagonal AC or BD. Then add inside f , a node x and the two edges Ax
and xC or the two edges Bx and xD. Each finite face inherits a root from the construction in
the following way : assume that f is rooted in (A, B), if we add the edges Ax and xC, then the
new faces (A, B, C, x) and (A, x, C, B) are rooted respectively in (B, C) and (x, C) otherwise
the new faces (A, B, x, D) and (x, B, C, D) are rooted respectively in (A, B) and (x, B). It is
easy to check that the root of each face is well defined and does not depend of the order of
insertions of the edges. The set ¤

′
k is then the set of quadrangulations with k bounded faces

reached by this procedure starting with the rooted square (formally define a growing procedure
Φ4, similar to Φ of Section 2.2, using ¤

′
k
• = {(m, f, α) | m ∈ ¤

′
k, f ∈ F ◦(m), α ∈ {0, 1}} the

rooted quadrangulations from ¤
′
k with a distinguished finite face marked with 0 or 1, and add

in f = (A, B, C, D) the pair of edges {Ax, xC} if α = 0 and {Bx, xD} otherwise).

There is again some bijections between ¤
′
k and some set of trees, but we were unable to define on

the corresponding trees a device allowing to study the distance in the maps (under the uniform
distribution, as well as under the distribution induced by the construction when both f and α
are iteratively uniformly chosen). We conjecture that they behave asymptotically in terms of

metric spaces as triangulations under Q△
2k and U△

2k up to some normalizing constant.

We describe below a bijection between ¤
′
k and the set of trees having no nodes having only one

child. There exists also a bijection with Schröder trees (trees where the nodes have 0,1 or 2
children) with k internal nodes.

Proposition 24. For any k ≥ 2, there exists a bijection Ψk between ¤
′
k and the set of trees

having k leaves, no nodes of outdegree 1 and with a root marked 0 or 1.

For k = 1, ¤
′
k = {s} the rooted square and in this case we may set Ψ(s) = {∅}, the tree reduced

to a (non marked) leaf.
Proof. Assume that k ≥ 2. Let (A, B, C, D) denotes the exterior face of every map m ∈ ¤

′
k.

Split ¤
′
k into two subsets ¤

′
k,0 and ¤

′
k,1, where ¤

′
k,0 (resp. ¤

′
k,1) is the set of maps m ∈ ¤

′
k

which contains an internal node x and the two edges Ax and xC (resp. Bx and xD). Notice
that m cannot contain at the same time an internal node x and Ax and xB. It is easy to see
that the rotation of π/2 is a bijection between ¤

′
k,0 and ¤

′
k,1. We then focus on ¤

′
k,0 and explain

the bijection between ¤
′
k,0 and the set of trees having no nodes of outdegree 1 and k leaves. Let

x1, . . . , xj be the j ≥ 1 internal points of m, adjacent to A and C. These points (if properly
labeled) define j +1 submaps m1, . . . , mi+j of m with border (A, xi, C, xi+1) for i = 0 to j where
B = x0 and D = xj+1. We then build t = Ψk(m) by sending m onto the root of t, and mi to the
ith child of the root of t. Each of the submaps mi can also be decomposed in the same way (the
root of mi induces an ordering on its internal vertices which permits to repeat the construction)
except that by maximality of the set {x1, . . . , xj}, the face (A, xi, C, xi+1) is either empty or
contains an internal node y adjacent to xi and xi+1. The coloring of the nodes (except the root)
is then useless. 2
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8.2 A family of stack-quadrangulations

The construction presented here is very similar to that of stack-triangulations; some details will
be skipped when the analogy will be clear enough. The difference with the model of quadrangu-
lations of Section 8.1 is that given a face f = (A, B, C, D), only a suitable choice of pair of edges
(either {Ax, xC} or {Bx, xD}) will be allowed. This choice amounts to forbidding “parallel”
pair of edges of the type (Ax, xC) and (Ax′, x′C).

Formally, set first ¤1 = {s} where s is the unique rooted square. The unique element of ¤2

(say s2) is obtained as follows. Label by (E0, E1, E2, E3) the vertices of s, such that (E0, E1) is
the root of s. To get s2, draw s in the plane, add in the bounded face of s a node x and the
two edges E0x and xE2 in this face. We define now ¤k recursively asking to the maps m with
border (A, B, C, D) and rooted in (A, B) to have the following property of decomposability.
If k ≥ 2 there exists a unique node x in the map m, such that Ax and xC are edges of
m. Moreover the submaps m1 and m2 of m with respective borders (A, x, C, D) (rerooted in
(x, C)) and (A, B, C, x) (rerooted in (B, C)) belong both to the sets ∪j<k¤j , more precisely
(m1, m2) ∈ ∪k−1

j=1¤j × ¤k−j (see an illustration on Figure 11).

This rerooting operation corresponds to distinguish a diagonal in each face (once for all) on
which the following insertion inside this face, if any, will take place.

A B

CD

x

Figure 11: The decomposition is well defined thanks to the uniqueness of a node x adjacent to
both A and C.

Any map belonging to ¤k is a rooted quadrangulation having k internal faces. There exists
again a canonical drawing of these maps, where the border (E0, E1, E2, E3) (rooted in (E0E1))
of the quadrangulations is sent on a fixed square of the plane, and where, when it exists, the
unique node x adjacent to both E0 and E2 is sent of the center of mass of (E0, E1, E2, E3),
the construction being continued recursively in the submaps m1 and m2 (the edges are straight
lines).

There exists also a sequential construction of this model, more suitable to define the distribution
of interest.

8.2.1 Sequential construction of ¤k

We introduce a labeling of the nodes of ¤k by some integers. The idea here is double. This
labeling will distinguish the right diagonal where the (only allowed) pair of edges will be inserted,
and also will be used to count the number of histories leading to a given map. A labeled map
may be viewed as a pair (m, l) where m is an unlabeled map and l an application from V (m)
onto the set of integers.
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We then consider ¤
ℓ
k the set of label quadrangulations having k internal faces, built as follows.

First ¤
ℓ
1 contains the unique labeled rooted map (s, l) with vertices (E0, E1, E2, E3) rooted in

(E0, E1) and labeled by

l(E0) = 4, l(E1) = 3, l(E2) = 2, l(E3) = 1.

Assume now that ¤
ℓ
k has been defined for some k ≥ 1, and is a set of quadrangulations with

k internal faces (and thus k + 3 vertices), where the vertices are labeled by different integers

from {1, . . . , k + 3}. To construct ¤
ℓ
k+1 from ¤

ℓ
k we consider an application Φℓ

4 from ¤
ℓ,•
k =

{((m, l), f) | m ∈ ¤
ℓ
k, f ∈ F ◦(m)} taking its values on the set of labeled quadrangulations with

k + 1 finite faces. The map Φl
4((m, l), f) is the map obtained by the following procedure:

- draw m in the plane;
- denote by (A, B, C, D) the vertices of f , such that A has the largest label (and thus C is at
the opposite diagonal of A in f),
- add a point x labeled k + 4 in f and the two edges Ax and xC in f . The obtained labeled
map is Φl

4((m, l), f).

We denote by ¤
ℓ
k+1 the set Φℓ

4(¤
ℓ,•
k ).

For (m, l) ∈ ¤
ℓ
k, we call πk (or more simply π) the function defined by πk

(
(m, l)

)
= m; this is

simply the application that erases the labels of a labeled map. We now show that π(¤ℓ
k) ⊂ ¤k,

in other words, taking into account that we have no doubt on the size of the maps, or on the
fact that it is a quadrangulation, we just have to check that the no parallel pairs of edges have
been constructed. Since the vertex of f whose label is the greatest (among the four vertices of
f) is the most recent vertex inserted in the map (among the four vertices of f), it is clear that
this cannot produce parallel pairs of edges.

E0

11111 2 2222

3 3333 44444

E1

5555
6

66

77

8

E2E3

Figure 12: A sequence of quadrangulations obtained by successive insertions of pair of edges.

Consider a labeled map (mk, lk) ∈ ¤
ℓ
k for some k ≥ 2. There exists a unique map (mk−1, lk−1)

in ¤
ℓ
k−1 such that (mk, lk) = Φℓ

4(mk−1, lk−1). It is obtained from (mk, lk) by the suppression of
the node with largest label together with the two edges that are incident to this node. Hence,
each map (mk, lk) characterizes uniquely a “legal” history of mk = π(mk, lk), meaning that for
i, mi+1 is obtained from mi by the insertion of two edges, and for any i, mi is in ¤i. From now
on, we will make a misuse of language and confound the histories of a stack-quadrangulation
mk ∈ ¤k and π−1(mk).

We denote by U¤

k the uniform distribution on ¤k and as done for triangulations in Section 2.2.1,

Q¤

k denotes the distribution of π(Mk, lk) when Mi+1 = Φℓ
4((Mi, li), Fi), where M1 is the unique

element of ¤1 and where Fi is chosen uniformly among the internal faces of Mi (all the Fi are
independent). The support of Q¤

k is the set ¤k, and one may check that Q¤

k 6= U¤

k for k ≥ 4.
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8.3 The function Λ′

As in Section 2.3.2, we define a function Λ′ to express the distance between any pair of nodes u
and v in a stack-quadrangulation m in terms of a tree associated bijectively. Let

W1,2 = {12, 21}⋆ · {11, 22} · {1, 2},

be the set of words on Σ2 = {1, 2}, beginning with any number of occurrences of 12 or 21,
followed by 11 or 22, then by a 1 or a 2. Notice that all the words of W1,2 have an odd length.
For example u = 12 21 21 11 2 ∈ W1,2.

Let u = u1 . . . uk be a word on the alphabet Σ2. Define τ1(u) := 0 and for j ≥ 2,

τj(u) := inf{i | i ≥ τj−1(u) such that u1+τj−1(u) . . . ui ∈ W1,2}. (39)

This amounts to decomposing u into subwords belonging to W1,2. We denote by Λ̃′(u) =
max{i | τi(u) ≤ |u|}, then u = u1 . . . uτ

Λ̃′(u)
(u)ũ, where ũ /∈ W1,2. Lastly we define Λ′(u) as

Λ′(u) = Λ̃′(u) +

{
0 if |ũ| is even and ũ does not end with 11 or 22

1 otherwise

Further, for two words u = wa1 . . . ak and v = wb1 . . . bl (with a1 6= b1), set as in the triangulation
case Λ′(u, v) = Λ′(a1 . . . ak) + Λ′(b1 . . . bl).

We now give a proposition for stack-quadrangulations similar to Proposition 1.

Proposition 25. For any K ≥ 1, there exists a bijection

Ψ¤
K : ¤K −→ T bin

2K−1

m 7−→ t := Ψ¤
K(m)

such that :
(a) each internal node u of m corresponds bijectively to an internal node u′ of t.
(b) Each leaf of t corresponds bijectively to a finite quadrangular face of m.
(c) For any u internal node of m, Λ′(u′) = dm(E0, u).
(d) For any u and v internal nodes of m

∣∣dm(u, v) − Λ′(u′, v′)
∣∣ ≤ 4. (40)

(e) Let u be an internal node of m. We have

degm(u) = 2 + #{v′ ∈ t◦ | v′ = u′w′, |w′| ≥ 2, w′ ∈ {12, 21}⋆}.

The existence of a bijection between ¤K and T bin

2K−1 comes from the recursive decomposition of
a stack-quadrangulation along the first pair of edges inserted (which can be determined at any
time since there is a unique node x adjacent to both A and C in any m ∈ ¤K , for K ≥ 2).

Proof. The proof of this Proposition is very similar to that of Proposition 2. We only sketch the
main lines. We propose a bijection that does not follow the decomposition provided in Figure
11, but which is illustrated in Figure 13.
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First, the maps in ¤K own also a canonical drawing as said above, hence we can consider the
set F¤

K of canonical faces belonging to at least one of the canonical drawings of a map of ¤K

(which is the analogue of the set FK introduced in Section 2.3.2). We keep the convention that
f = (A, B, C, D) refers to the canonical face f admitting (A, B) as distinguished edge.

We construct a bijection ψ¤ which associates a word of Σ⋆
2 with each canonical face of a stack-

quadrangulation. There is a unique canonical face (B, C, D, A) in F¤
2 , its image by ψ¤ is set

to be the empty word on Σ2. We proceed then by induction: assume that ψ¤ is well defined
on F¤

j for j ≤ K and let f = (A, B, C, D) be a canonical face of F¤
K . The insertion of a node

x and of the two corresponding edges in the face f (in a quadrangulation having f as a face)
gives birth to two “new” canonical faces which are set to be (B, x, D, A) and (B, x, D, C). If the
image of f by ψ¤ is u, we associate respectively to these two new faces the nodes u1 and u2.
Notice that u1 (resp. u2) corresponds to the face situated on the left (resp. on the right) of the
distinguished edge (B, x) (see Figure 13).

With slight modifications in the proof of Proposition 1, we see that the bijection ψ¤ induces a
bijection ψ¤

K between the set H¤(K) of histories of maps of ¤K and HT (K) the set of histories
of trees of T bin

2K−1 (for any K ≥ 1).

We associate now with any stack-quadrangulation a binary tree as represented on Figure 13.
Formally let mK be a stack-quadrangulation and hK be one of its history, we define tK the tree
of T bin

2K−1 whose history is ψ¤
K . The tree tK is well defined thanks to the properties of consistence

and robustness of ψ¤
K , details are given for the case of stack-triangulations in Lemma 2. We

finally set Ψ¤
K(mK) := tK .

E0 E1

E2E3

Figure 13: A sequence of quadrangulations obtained by successive insertions of pair of edges.

To prove properties (c), d and (e) we introduce a notion of type of faces in a stack-
quadrangulation (or type of a node in the corresponding tree) as in the proof of Proposition
2. For any face f = (A, B, C, D) in m such that O(f) = (A, B), we set:

type(A, B, C, D) := (dm(E0, A), dm(E0, B), dm(E0, C), dm(E0, D))

the 4-tuple of the distance of A, B, C and D to the root vertex of m. It is well known that in a
quadrangulation, the type of any face is (i, i + 1, i, i + 1) or (i, i + 1, i + 2, i + 1), for some i, or
a circular permutation of this.
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As the types of the faces arising in the construction are not modified by the insertions of new
edges, we mark any node of t = Ψ¤(m) with the type of the corresponding face. It is then easy
to check that for u′ an internal node of t with type(u′) = (a, b, c, d), we have dm(u, E0) = 1+b∧d
and {

type(u′1) = ( b, 1 + b ∧ d, d, a ),
type(u′2) = ( b, 1 + b ∧ d, d, c ),

(41)

Property (c) follows directly from (41) using the fact that type(∅) = (1, 2, 1, 0). Properties (d)
and (e) are deduced directly by the same arguments as for triangulations. 2

8.3.1 Asymptotic behavior of the quadrangulations

First, we state a Lemma analogous to Lemma 14:

Lemma 26. Let (Xi)i≥1 be a sequence of i.i.d. random variables taking their values in Σ2 =
{1, 2} and let Wn be the word X1 . . . Xn.

(i) n−1Λ′(Wn)
(a.s.)−−−→

n
Λ′

¤
where

Λ′
¤ := 1/5 (42)

(ii) P(|Λ′(Wn) − nΛ′
¤
| ≥ n1/2+u) → 0 for any u > 0.

Proof. It is proved similarly to Lemma 14 except that here if (Xi)i≥1 is a sequence of i.i.d r.v
uniformly distributed in {1, 2} and if W = X1X2 . . . then for N ≥ 3 and k ≥ 2,

P(τ2(W ) = 2k + 1) = P(X1 6= X2, . . . , X2k−3 6= X2k−2, X2k−1 = X2k) =
1

2k
,

which means hat τ2(W ) (and τi(W )− τi−1(W ) as well) has the same law as 1+2Geometric(1/2)
whose mean is 5. 2

We are now in position to state the main theorem of this part. We need to examine first the
weak limit of binary trees. Denote by P bin

2n+1 the uniform distribution on the set of binary trees
with 2n + 1 nodes. This time P bin

∞ is the distribution of a random infinite tree, build around an
infinite line of descent Lbin

∞ = (X(j), j ≥ 0), where X(j) = X1 . . . Xj [and (Xi) is a sequence of
i.i.d. r.v. uniformly distributed on Σ2 = {1, 2}] on the neighbors of which are grafted critical
GW trees with offspring distribution νbin = 1

2(δ0 + δ2). We sum up in the following Proposition
the results concerning the convergence of trees under P bin

2n+1.

Proposition 27. (i) When n → +∞, P bin
2n+1 converges weakly to P bin

∞ for the topology of local
convergence.
(ii) The following convergence holds for the GH topology. Under P bin

2n+1,

(
T,

dT√
2n

)
(d)−−→
n

(T2e, d2e).

The first point very similar to Proposition 6 is due to Gillet [23], the second point to Aldous [1].

The results concerning triangulations can be extended to the present model of quadrangulations.
In particular, a construction of an infinite map m¤

∞ similar to m∞ can be done. Following the
lines of the triangulation case, one may prove the following result:
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Theorem 28. (i) Under U¤
n , (mn) converges in distribution to m¤

∞ for the topology of local
convergence.
(ii) Under U¤

n , (
mn,

Dmn

Λ′
¤

√
2n

)
(d)−−→
n

(T2e, d2e),

for the Gromov-Hausdorff topology on compact metric spaces.

Now, the asymptotic behavior of maps under Q¤

k is studied again thanks to trees under Qbin

2K−1 :=

Q¤

K ◦ (Ψ¤
K)−1 the corresponding distribution on trees. This distribution on T bin

2K−1 is famous in
the literature since it corresponds to the distribution of binary search trees. Indeed the insertion
in the map m corresponds to an uniform choice of a leaf in the tree Ψ¤(m) and its transformation
into an internal node having two children. Again, using the same tools as those used to treat
the asymptotic behavior of trees under Qter (in particular, here the fragmentation is binary, and

Y u d
= (U, 1 − U) where U is uniform in [0, 1]), we get the following proposition.

We keep in the following Proposition the notation of Proposition 20 when possible.

Proposition 29. Let t be a random tree under the distribution Qbin

2K+1.
1) We have

(4 log n)−1/2 (|u| − 4 log n, |v| − 4 log n)
(d)−−→
n

(N1, N2).

2) Conditionally to (|u⋆|, |v⋆|) (their lengths) u⋆ and v⋆ are independent random words composed
with |u⋆| and |v⋆| independent letters uniformly distributed in Σ2 = {1, 2}.
3) For any an → +∞, we have |w|/an

proba.−−−−→
n

0.

The interested reader may find in Mahmoud & Neininger [35, Theorem 2] a different proof of
the first assertion, the second one, once again being a consequence of the symmetries of this
class of random trees.

Similarly to Theorem 21, we obtain the following theorem.

Theorem 30. Let Mn be a stack-quadrangulation under Q¤

2n. Let k ∈ N and v1, . . . ,vk be k
nodes of Mn chosen independently and uniformly among the internal nodes of Mn. We have

(
DMn(vi,vj)

4Λ′
¤

log n

)

(i,j)∈{1,...,k}2

proba.−−−−→
n

(1i6=j)(i,j)∈{1,...,k}2 .

9 Appendix

9.1 Proof of the Theorems of Section 5

The aim of this section is to prove Theorem 16. Our study of the distance in a stack-triangulation
mn passes via the study of the function Λ on the tree T = Ψ△

n (mn). Let w(r) be the rth internal
node of T according to the LO (w(0) is the root), and u(r) be the rth internal node of m (the
image of w(r) as explained in Proposition 1). For any r and s,

|dm(u(r), u(s)) − Λ(w(r), w(s))| ≤ 4. (43)
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Lemma 31. Under U△
2n, the family

((
dmn (ns,nt)

Λ△

√
3n/2

)

(s,t)∈[0,1]2

)

n

is tight on C[0, 1]2.

Proof. We claim first that under Uter
3n+1, the family

(
n−1/2dT ◦(ns, nt)

)
n

is tight in C[0, 1]2,
where dT ◦(k, j) = dT ◦(w(k), w(j)) is the (re-parametrization of the) restriction of the distance
in T on its set of internal nodes, and where dT ◦ is smoothly interpolated as explained below
Theorem 15. Indeed, let (H◦(k))k=0,··· ,n−1 where H◦(k) = |w(k)| be the height process of
the internal nodes of T (interpolated between integer points). In Marckert & Mokkadem [38,
Corollary 5], the process given the successive height of the nodes of a fixed degree d (according
to the LO) in a Galton-Watson tree conditioned by the size is studied, and is shown to converge
to the Brownian excursion, under a suitable rescaling. In a ternary tree, the process giving the
successive height of the nodes of degree 3 coincides with H◦. Using [38], one check easily that

(
H◦(nt)√

3n/2

)

t∈[0,1]

(d)−−→
n

(2et)t∈[0,1] . (44)

An alternative proof pointed out by a referee raises on the following claim: if T is a GW tree
under P ter (resp. P ter

3n+1), then T ◦ is also a Galton-Watson tree with offspring distribution
µ(0) = 8/27, µ(1) = 12/27, µ(2) = 6/27, µ(3) = 1/27 (resp. conditioned to have n nodes); the
mean of the offspring distribution is 1, and its variance 2/3 leading to (44) readily. A formal proof
of this claim is a bit long, but the idea is simple: a node in T ◦ has degree a if the corresponding
node in T has a children having some children, and 3 − a children who have no child.

Using that for i ≤ j,
∣∣∣∣dT ◦(w(i), w(j)) − (H◦(i) + H◦(j) − 2 min

k∈{i,i+1,...,j}
H◦(k))

∣∣∣∣ ≤ 2

we get that (
dT ◦(ns, nt)√

3n/2

)

s,t∈[0,1]

(d)−−→
n

(d2e(s, t))s,t∈[0,1]

where the convergence holds in C[0, 1]2. This is just a consequence of the continuity of the
application f 7→

[
(s, t) → f(s) + f(t) − 2 minu∈[s,t] f(u)

]
from C[0, 1] onto C[0, 1]2. We deduce

from this that the sequence

((
dT◦ (ns,nt)√

3n/2

)

s,t∈[0,1]

)

n

is tight and by (43) and the trivial bound

Λ(u, v) ≤ dT ◦(u, v) for any u and v ∈ T ◦,

dmn(ns, nt)√
3n/2

≤ dT ◦(ns, nt)√
3n/2

+ 4n−1/2

and thus the Lemma holds true. 2.

The convergence of the finite dimensional distributions in Theorem 16 is a consequence of the
following stronger result.

Proposition 32. Let 0 ≤ s < t ≤ 1. When n goes to +∞, under U△
3n+1

∣∣∣∣∣
dmn(⌊ns⌋, ⌊nt⌋)

Λ△

√
3n/2

− dT◦(⌊ns⌋, ⌊nt⌋)√
3n/2

∣∣∣∣∣
proba.−−−−→

n
0.
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To prove this Proposition we need to control precisely Λ(w(⌊ns⌋), w(⌊nt⌋)); we will show that
this quantity is at the first order, and with a probability close to 1, equal to Λ△dT ◦(ns, nt). This
part is largely inspired by the methods developed in a work of the second author [36].

We focus only on the case s, t fixed in (0, 1) and s < t (which is the most difficult case). In the
following we write ns and nt instead of ⌊ns⌋ and ⌊nt⌋. Consider w̌ns,nt = w(ns) ∧ w(nt), and
write

w(ns) = w̌ns,ntl0lns,nt and w(nt) = w̌ns,ntr0rns,nt, (45)

where l0 6= r0 (the letters l and r refer to “left” and “right”).

For compactness of notation, set

Dec(n) := (W1, W2, W3, H1, H2, H3, L, R)

:= (w̌ns,nt, lns,nt, rns,nt, |w̌ns,nt|, |lns,nt|, |rns,nt|, l0, r0),

Dec standing for ”decomposition”. Even if not recalled in the statements, these variables are
considered as random variables under P ter

3n+1. Let now D̃ec be the random variable defined by

D̃ec(n) := (W̃1, W̃2, W̃3, H1, H2, H3, L̃, R̃)

such that, conditionally on (H1, H2, H3) = (h1, h2, h3), the random variables W̃1, W̃2, W̃3, L̃, R̃
are independent and defined by:
– for each i ∈ {1, 2, 3}, W̃i is a word with hi i.i.d. letters, uniformly chosen in {1, 2, 3},
– the variable (L̃, R̃) is a random variable uniform in I3 = {(1, 2), (1, 3), (2, 3)}.

Definition 8. Let (Y1, Y2, . . . ) and (X1, X2, . . . ) be two sequences of r.v. taking their values in

a Polish space S. We say that PXn/PYn

⋆→ 1 or Xn//⋆ Yn → 1 if for any ε > 0 there exists a
measurable set Aε

n and a measurable function fε
n : Aε

n 7→ R satisfying PXn = fε
nPYn on Aε

n, such
that supx∈Aε

n
|fε

n(x) − 1| →
n

0 and such that PYn(Aε
n) ≥ 1 − ε for n large enough.

The following lemma is proved in [36, Lemma 16]1.

Lemma 33. Assume that Xn//⋆Yn → 1 then:

• If Yn
(d)−−→
n

Y then Xn
(d)−−→
n

Y .

• Let (gn) be a sequence of measurable functions from S into a Polish space S′. If Xn//⋆ Yn → 1
then gn(Xn)//⋆ gn(Yn) → 1

The main step in the proof of Proposition 32 is the following Proposition.

Proposition 34. When n → +∞, Dec(n)//⋆D̃ec(n) → 1.

Assume that this proposition holds true and let us end the proof of Proposition 32.

Proof of Proposition 32. From Proposition 34 and Lemma 33, we deduce

(H2, H3, W2, W3)//⋆(H2, H3, W̃2, W̃3) → 1.

1In[36, Lemma 16] the function gn is assumed to be continuous, but only the measurability is needed
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Since (3n/2)−1/2
(
H2, H3, Λ(W̃2), Λ(W̃3)

)
converges in distribution to

(2es − m2e(s, t), 2et − m2e(s, t), Λ△(2es − m2e(s, t)), Λ△(2et − m2e(s, t))) (46)

thanks to (44) and Lemma 14 (and also Lemma 35 below which ensures that Hi ∈ [M−1, M ]
√

n
with probability arbitrary close to 1, if M is chosen large enough, leading to a legal using of
Lemma 14). We then deduce by the first assertion of Lemma 33 that

(3n/2)−1/2 (H2, H3, Λ(W2), Λ(W3))

converges also in distribution to the random variable described in (46).

Since |dT ((w(ns), w(nt)) − (H2 + H3)| ≤ 2 and |Λ(w(ns), w(ns)) − (Λ(W̃2) + Λ(W̃3))| ≤ 1, we
have

|Λ△dT ((w(ns), w(nt)) − Λ(w(ns), w(ns))| ≤ |Λ△(H2 + H3) − (Λ(W̃2) + Λ(W̃3))| + cte

which implies together with what precedes

n−1/2 |Λ△dT (w(ns), w(nt)) − Λ(w(ns), w(ns))| proba.−−−−→
n

0. 2

It only remains to show Proposition 34. The absolute continuity PDec(n) ≺ PgDec(n)
comes from

the inclusion of the (discrete) support of Dec(n) in that of D̃ec(n).

For any word w = w1 . . . wk with letters in {1, 2, 3} define

N1(w) =
k∑

j=1

(wi − 1) and N2(w) =
k∑

j=1

(3 − wi).

Seeing w as a node in a tree, N1(w) and N2(w) give the number of nodes at distance 1 on the
left (resp. on the right) of the branch J∅, wK. Set

An,M = {(w1, w2, w3, h1, h2, h3, l, r) | h1, h2, h3 ∈
√

n[M−1, M ],

(w1, w2, w3) ∈ Jh1 × Jh2 × Jh3 , (l, r) ∈ I3},

where for any h > 0, Jh =

{
a ∈ Σh

3 | (N1(a), N2(a)) ∈
[
h − h2/3, h + h2/3

]2
}

.

Lemma 35. For any ε > 0, there exists M > 0 such that for n large enough

Pn(D̃ec(n) ∈ An,M ) ≥ 1 − ε.

Proof. The convergence of the rescaled height process to 2e (as stated in (44)) implies that
the vector (3n/2)−1/2(H1, H2, H3) converges in distribution to (m2e(s, t), 2es − m2e(s, t), 2et −
m2e(s, t)). Since a.s. m2e(s, t) < 2 min(es, et), and a.s m2e(s, t) > 0 (if s, t /∈ {0, 1}), for any
ε > 0 there exists M > 0 such that

P
(
{m2e(s, t), 2es − m2e(s, t), 2et − m2e(s, t)} ⊂ (M−1, M)

)
≥ 1 − ε.
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By the Portmanteau theorem, and taking into account the normalisation, for any ε > 0,

lim inf P ter

3n+1(Hi ∈ [M−1, M ]
√

n, i ∈ {1, 2, 3}) ≥ 1 − ε for M large enough. (47)

Let W [h] be a random word with h i.i.d. letters uniform in Σ3. For h ∈ N, by symmetry
N1(W [h]) and N2(W [h]) have the same law, and there exists c1 > 0, c2 > 0, s.t

P (W [h] /∈ Jh) ≤ c1 exp(−c2 h1/3).

Indeed the number xi of letters i in W [h] is binomial B(h, 1/3) distributed, and the Hoeffding
inequality leads easily to this result (N1(h) = x2 + 2x3 which is in mean h/3 + 2h/3 = h). 2

To prove Proposition 34, we now evaluate P(Dec(n) = x)/P(D̃ec(n) = x) for any x ∈ An,M . The
number of ternary trees from T ter

3n+1 satisfying

Dec(n) = (w1, w2, w3, |w1|, |w2|, |w3|, l, r)

for some prescribed words w1, w2, w3 and (l, r) ∈ I3 is equal to the number of 3-tuples of forests
as drawn on Figure 14. The first forest F1 has S1(w1, w2, w3, l, r) = N1(w1) + N1(w2) + l − 1
roots and since w(ns) is the ns + 1th internal nodes (not counted in F1) and since the branch
J∅, w(ns)K contains |w1|+ |w2|+2 internal nodes, F1 has n1(w1, w2, w3, l, r) = ns−|w1|−|w2|−1
internal nodes (and then 3n1 + S1 nodes). The second forest F2 has S2(w1, w2, w3, l, r) =
3 + N2(w2) + N1(w3) + (r − l − 1) roots (the 3 comes from the fact that w(ns) is an internal
node), and n2(w1, w2, w3, l, r) = nt − ns − |w3| − 1 internal nodes. Finally the third forest F3

has S3(w1, w2, w3, l, r) = 3 + N2(w3) + N2(w1) + 3− r roots and n3(w1, w2, w3, l, r) = n− nt− 1
internal nodes.

∅

ǔns,nt

u(ns)

u(nt)

F1

F2

F3

Figure 14: On this example w1 = 321, w2 = 12,w3 = 2, l = 1, r = 3, S1 = 4, S2 = 8, S3 = 7.

Before going further, we recall that under P ter all trees in T ter
3n+1 have the same weight

3−n(2/3)2n+1 since they have n internals nodes and 2n+1 leaves. Let Fk = (T (1), . . . , T (k)) be a
forest composed with k independent GW trees with distribution P ter, and let |Fk| =

∑k
i=1 |T (i)|

be the total number of nodes in Fk. By the rotation/conjugation principle,

P ter(|Fk| = m) =
k

m
q(m, k)

where q(m, k) = P(Zm = −k) where Z := (Zi)i≥0 is a random walk starting from 0, whose
increment value are −1 or 2 with respective probability 2/3 and 1/3.
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Lemma 36. For any words w1, w2, w3 on the alphabet Σ3 and (l, r) ∈ I3, we have

P ter

3n+1 ((W1, W2, W3, L, R) = (w1, w2, w3, l, r)) =
P ter

(
|F i

Si
| = 3ni + Si, i ∈ {1, 2, 3}

)

3|w1|+|w2|+|w3|+3P ter(T ter
3n+1)

=

∏3
i=1

Si
3ni+1q3ni+Si,Si

3|w1|+|w2|+|w3|+3P ter(T ter
3n+1)

where the F i are independent GW forests with respective number of roots the Si :=
Si(w1, w2, w3, l, r)’s, and ni = ni(w1, w2, w3, l, r) for any i ∈ {1, 2, 3}.

Note 6. Notice that if |wi| = hi for every i, for any l, r ∈ {1, 2, 3}, then

P ter

3n+1 (Dec(n) = (w1, w2, w3, h1, h2, h3, l, r)) = P ter

3n+1 ((W1, W2, W3, L, R) = (w1, w2, w3, l, r)) .

Proof. Notice that there is a hidden condition here since (L, R) are well defined only when
u(ns) is not an ancestor of u(nt) (which happens with probability going to 0).
The proof follows a counting argument, together with the remark that all the trees in T ter

3n+1 have

the same weight. The term (1/3)|w1|+|w2|+|w3|+3 comes from the |w1| + |w2| + |w3| + 3 internal
nodes on the branches J∅, w(ns)K ∪ J∅, w(nt)K. 2

We now evaluate P ter
3n+1

(
D̃ec(n) = (w1, w2, w3, h1, h2, h3, l, r)

)
for (w1, w2, w3) ∈ Σh1

3 ×Σh2
3 ×Σh3

3

and (l, r) ∈ I3. The variable D̃ec(n) is defined conditionally on (H1, H2, H3). We have

P ter

3n+1 ((H1, H2, H3) = (h1, h2, h3)) =
∑ P ter

(
|F i

S′
i
| = 3n′

i + S′
i, i ∈ {1, 2, 3}

)

3|w
′
1|+|w′

2|+|w′
3|+3P ter(T ter

3n+1)

=
∑

∏3
i=1

S′
i

3n′
i+S′

i
q(3n′

i + S′
i, S

′
i)

3|w
′
1|+|w′

2|+|w′
3|+3P ter(T ter

3n+1)

where S′
i := Si(w

′
1, w

′
2, w

′
3, l

′, r′)’s, n′
i = ni(w

′
1, w

′
2, w

′
3, l

′, r′) and where the sum is taken on
(w′

1, w
′
2, w

′
3) ∈ Σh1

3 × Σh2
3 × Σh3

3 and (l′, r′) ∈ I3. The term 3−|w′
1|−|w′

2|−|w′
3|−3 comes from the

internal nodes of the branch J∅, w(ns)K ∪ J∅, w(nt)K. In other words

P ter

3n+1 ((H1, H2, H3) = (h1, h2, h3)) =
E

(∏3
i=1

Si
3ni+Si

q(3ni + Si,Si)
)

32P ter(T ter
3n+1)

(48)

where Si and ni are the r.v. Si and ni when the wi are words with hi i.i.d. letters, uniform in
Σ3 and (l, r) is uniform in I3. Finally, by conditioning on the Hi’s, we get

P ter

3n+1

(
D̃ec(n) = (w1, w2, w3, h1, h2, h3, l, r)

)
=

P ter
3n+1 ((H1, H2, H3) = (h1, h2, h3))

3|w1|+|w2|+|w3|+1

and

P ter
3n+1 (Dec(n) = (w1, w2, w3, h1, h2, h3, l, r))

P ter
3n+1

(
D̃ec(n) = (w1, w2, w3, h1, h2, h3, l, r)

) =

∏3
i=1

Si
3ni+Si

q(3ni + Si, Si)

E
(∏3

i=1
Si

3ni+Si
q(3ni + Si,Si)

) . (49)
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This quotient may be uniformly approached for (w1, w2, w3, h1, h2, h3, l, r) ∈ An,M thanks to a
central local limit theorem applied to the random walk Z:

sup
l∈−n+3N

∣∣∣∣
√

n

3
P(Zn = l) − 1√

4π
exp

(
− l2

4n

)∣∣∣∣ −−−→n
0,

since the increment of Z are centered and have variance 2. This gives easily an equivalent for the
numerator of (49) (since q(m, k) = P(Zm = −k)). For the denominator, split the expectation
with respect to (w′

1, w
′
2, w

′
3) belonging to Jh1 × Jh2 × Jh3 or not. The first case occurs with

probability close to 1, and the local central limit theorem provides the same asymptotic that the
numerator. The second case provides an asymptotic with a smaller order (notice that the fact
that 0 ≤ N1(w) ≤ 2|w| simplifies the use of the central local limit theorem) and we get for any
ε > 0, ∣∣∣∣∣∣

P ter
3n+1 (Dec(n) = (w1, w2, w3, h1, h2, h3, l, r))

P ter
3n+1

(
D̃ec(n) = (w1, w2, w3, h1, h2, h3, l, r)

) − 1

∣∣∣∣∣∣
≤ ε

on An,M for n large enough. 2
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42 , no. 4, 455-489.

[34] R. Lyons, R. Pemantle, & Y. Peres, (1995) Conceptual proofs of L log L criteria for mean behavior
of branching processes, Ann. Probab. 23, no. 3, 1125–1138. MR1349164

[35] H.M. Mahmoud & R. Neininger, (2003) Distribution of distances in random binary search trees, Ann.
of App. Probab. 13, no. 1, 253 -276. MR1951999

[36] J.F. Marckert, (2007) The lineage process in Galton-Watson trees and globally centered discrete
snakes, to appear in Annals of applied probability. MR2380897

[37] J.F. Marckert & G. Miermont, (2007) Invariance principles for random bipartite planar maps,Ann.
Probab., (2007), Vol. 35, No.5, 1642-1705 MR2349571

[38] J.F. Marckert & A. Mokkadem, (2003) The depth first processes of Galton-Watson trees converge to
the same Brownian excursion, Ann. Probab. Vol. 31, No. 3. MR1989446

[39] J.F. Marckert & A. Mokkadem, (2006) Limit of Normalized Quadrangulations: the Brownian map,
Ann. Probab., Vol. 34, No.6, p. 2144-2202. MR2294979

[40] G. Miermont, (2006) An invariance principle for random planar maps, Fourth Colloquium in Math-
ematics and Computer Sciences CMCS’06, DMTCS Proceedings AG, 39–58, Nancy.

[41] G. Miermont & M. Weill, (2007) Radius and profile of random planar maps with faces of arbitrary
degrees to appear in Electron. J. Probab., arkiv: math.PR/0706334. MR2375600

[42] J. Pitman, (2002) Combinatorial stochastic processes. Lectures from the 32nd Summer School on
Probability Theory held in Saint-Flour, July 7–24, 2002. Lecture Notes in Mathematics, 1875.
MR2245368

[43] G. Schaeffer, (1998) Conjugaison d’arbres et cartes combinatoires aléatoires., PhD Thesis, Université
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