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1 Introduction and Result

A (one dimensional) scenery is a coloring & of the integers Z with Cy colors {1,...,Cp}. Two
sceneries &, ¢ are called equivalent, £ =~ £, if one of them is obtained from the other by a
translation or reflection. Let (S(t)):>0 be a recurrent random walk on the integers. Observing
the scenery ¢ along the path of this random walk, one sees the color £(S(t)) at time ¢. The
scenery reconstruction problem is concerned with trying to retrieve the scenery &, given only
the sequence of observations x := (£(S(t)))i>0. Quite obviously retrieving a scenery can only
work up to equivalence. Work on the scenery reconstruction problem started by Kesten’s ques-
tion, whether one can recognize a single defect in a random scenery. Kesten [11] answered this
question in the affirmative in the case of four colors. He takes the colors to be i.i.d. uniformly
distributed. In his Ph.D. thesis [18], see also [17] and [19], Matzinger has proved that typical
sceneries can be reconstructed: He takes the sceneries as independent uniformly distributed ran-
dom variables, too. He showed that almost every scenery can be almost surely reconstructed.
In [12], Kesten noticed that this proof in [18] heavily relies on the skip-free property of the
random walk. He asked whether the result might still hold in the case of a random walk with
jumps. This article gives a positive answer to Kesten’s question: If the random walk can reach
every integer with positive probability and is recurrent with bounded jumps, and if there are
strictly more colors than possible single steps for the random walk, then one can almost surely
reconstruct almost every scenery up to equivalence.

More formally: Let C = {1,...,Cy} denote the set of colors. Let p be a probability measure
over Z supported over a finite set M := suppp C Z. With respect to a probability measure
P, let S = (S(k))ken be a random walk starting in the origin and with independent increments
having the distribution p. We assume that E[S(1)] = 0; thus S is recurrent. Furthermore we
assume that supp p has the greatest common divisor 1, thus S can reach every z € Z with
positive probability. Let £ = (£(j));jez be a family of i.i.d. random variables, independent of .S,
uniformly distributed over C. We prove:

Theorem 1.1 If |C| > | M|, then there exists a measurable map A : CN — C% such that
PLAG) ~ € =1 (1)

Research on random sceneries started by work by Keane and den Hollander [10], [4]. They
thoroughly investigated ergodic properties of a color record seen along a random walk. These
questions were motivated among others by the work of Kalikow [9] and den Hollander, Steif [3],
in ergodic theory.

As was shown in [19] the two color scenery reconstruction problem for a scenery which is i.i.d.
is equivalent to the following problem: let (R(k))rez and (S(k))k>0 be two independent simple
random walks on Z both starting at the origin and living on the same probability space. Does
one path realization of the iterated random walk (R(S(k)))x>0 uniquely determine the path of
(R(k))kez a.s. up to shift and reflection around the origin? This is a discrete time analogue to
a problem solved by Burdzy [2] concerning the path of iterated Brownian motion.

A preform of the scenery reconstruction problem is the problem of distinguishing two given
sceneries. It has been investigated by Benjamini and Kesten in [1] and [11]. Howard in a series of
articles [8], [7], [6] also contributed to this area; see below. The scenery distinguishing problem
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is the following: Given two different sceneries &, ¢ and observations (£(S(5))) >0, where € equals
either ¢ or ¢, the question is: Can we distinguish whether £ = £ or £ = ¢’? Benjamini and
Kesten [1] showed that one can almost surely distinguish almost all pairs of sceneries &, &', if
they are drawn independently with i.i.d. entries. Their result even holds in the two dimensional
case. This result is not beaten by a reconstruction result: the reconstruction method in two
dimensions by Léwe and Matzinger [15] holds only when we have many colors. When ¢ and
¢’ differ in precisely one point, the distinguishing problem was examined by Kesten [11] and
Howard [6]. Kesten proved that almost all pairs of those sceneries (£, &) can be distinguished in
the 5-color case. He assumes the sceneries to be i.i.d. Howard proved that all periodic sceneries
can be distinguished.

As mentioned above, it is in general not possible to reconstruct &£; one can at most expect a
reconstruction up to equivalence. As a matter of fact, even this is impossible: By a theorem of
Lindenstrauss [14], there exist non-equivalent sceneries that cannot be distinguished. Of course,
they also cannot get reconstructed.

For sceneries that can be reconstructed Benjamini asked whether the reconstruction works
also in polynomial time. This question was positively answered by Matzinger and Rolles [21]
and [23] (see also [20]) in the case of a two color scenery and a simple random walk with holding.
Lowe and Matzinger [16] proved that reconstruction works in many cases even if the scenery is
not i.i.d., but has some correlations. For the setting of our article den Hollander asked if the
finite bound on the length of the jumps is necessary for scenery reconstruction.

In a way a result by Lenstra and Matzinger complements the present paper. If the random
walk might jump more than distance 1 only with very small probability and if the tail of the
distribution of the jumps decays sufficiently fast, Lenstra and Matzinger [13] proved that scenery
reconstruction is still possible.

Based on the results of the present paper, Matzinger and Rolles [22] showed that the scenery
can be still reconstructed if there are some random errors in the observations.

Let us explain how this article is organized. In order to avoid getting lost among the many
details of the rather complex proof, this article is ordered in a “top-down” approach: In order to
show the global structure of the reconstruction procedure in a compact but formal way, we start
with a section called “Skeleton”. This section collects the main theorems and main definitions
of the reconstruction method, using “lower level” procedures as black boxes. In the “Skeleton”
section, we only show how these theorems fit together to yield a proof of the reconstruction
theorem 1.1; all proofs of the “ingredient” theorems are postponed to later sections. Although
this approach is more abstract than a “bottom-up” structure would be, we hope that it allows
the reader to more quickly see the global structure.

Overview on some steps for the reconstruction procedure The reconstruction starts
with an ergodicity argument: It suffices to consider only sceneries which produce a very untypical
initial piece of observations; in particular we may condition on a large but finite initial piece
of the observations to be constant. We apply a reconstruction procedure, which works only in
this untypical situation, again and again to the observations with larger and larger initial pieces
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dropped, disregarding all instances that do not produce the prescribed “untypical” outcome.
Finally we will see even the prescribed “untypical situation” sufficiently frequently to successfully
reconstruct the scenery. The “untypical initial piece” serves to identify locations close to the
origin at later times again, at least up to a certain time horizon.

The reconstruction procedure consists of a hierarchy of partial reconstruction procedures;
these try to reconstruct larger and larger pieces of the scenery around the origin. The hierarchy
of partial reconstruction procedures is defined recursively.

To reconstruct a large piece in the (m + 1)st hierarchical level, we need some information
where the random walker is located while producing its color records. This information is
encoded in stopping times, which stop the random walk with high probability sufficiently close
to the origin, at least up to a certain time horizon.

The stopping times for the (m + 1)st hierarchical level are built using the mth level partial
reconstruction procedure: Given a reconstructed piece around the origin from the mth level, one
starts the whole mth level partial reconstruction procedure again at a later “candidate time”.
Whenever the piece of scenery obtained in this way has a sufficiently high overlap with the
reconstructed piece around the origin, then one has a high chance that the random walk is close
to the origin at the “candidate time”.

The global structure of this recursive construction is formally described in the “Skeleton”
Section 3. Most theorems in this section are proven in Section 5, and we prove in Sections 7 and
8 that the stopping times fulfill their specification. Some related lemmas claimed in Section 5
are also proved in Section 8.

The heart of the reconstruction procedure, i.e. the construction of the partial reconstruction
algorithm given the stopping times, is described in Section 4 and proven to be correct in Section
6. Roughly speaking, to reconstruct a piece of scenery of size 2™, we collect a “puzzle” of words
of size proportional to n, i.e. logarithmically in the size of the piece to be reconstructed. The
puzzle contains (with high probability) all correct subwords of the given size in the “true” piece
of scenery to be reconstructed, but also some “garbage” words. We play a kind of puzzle game
with these pieces: starting with seed words, we reconstruct larger and larger pieces by adjoining
more and more pieces of the puzzle that fit to the growing piece.

Although the actual construction is much more complicated than the idea described now,
let us describe an (over)simplified version of how to collect pieces in the puzzle: Suppose we
have two “characteristic signals” A and B in the scenery, which occur only once in the scenery.
Suppose that the distance between A and B is a multiple of the maximal step size [_, of the
random walk to the right. Then we can almost surely identify the whole “ladder” word read
while stepping from A to B with step size [_, as follows: Look at all occurrences of A and B in
the color record with minimal distance. The words occurring in the color record between those
A and B should (a.s.) be always the same in the whole record, and it is the “ladder” word we
are looking for. Of course, by ergodicity there are almost surely no (bounded) signals A and B
in the scenery that occur only once; this is why the simple idea described here cannot be applied
without considerable refinement.

The “pieces of puzzle” obtained are [_,-spaced pieces; not pieces with spacing 1. This is
why our puzzle game leads to reconstructions of modulo classes of the scenery modulo [_,
only. In order to successfully reconstruct the whole scenery, we need to arrange these modulo
classes correctly, using some “neighborship” relation between pieces of the puzzle. Unfortunately,
the correct arrangement of modulo classes is a technically intricate step in the reconstruction
procedure.
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2 Some notation

We collect some globally used nonstandard notations and conventions in this section.

Sets, functions, and integers: For functions f and sets D the notation f[D means the
restriction of f to the set D. D need not be contained in the domain of f; thus f[D is defined
on D N domain(f). If f and g are functions, the notation f C g means that f is a restriction
of g; this notation is consistent with the set theoretic definition of functions. By convention,
0 € N. The integer part of a real number r is denoted by |r| := max{z € Z | z < r}; similarly
[r] :=min{z € Z | z > r}.

Integer intervals: Unless explicitly stated otherwise, intervals are taken over the integers,
eg. [a,b)={n€Z : a<n<b}, |a,bj={n€Z : a<n <b}. Given a fixed number Cy, we
define the set of colors C :=[1,Co] = {1,...,Co}, |C| = Cb.

In the rest of this section I will denote an arbitrary subset of Z unless otherwise specified.

Sceneries and equivalence: By definition, a scenery is an element of CZ. If I C 7Z, then the
elements of C! are called pieces of scenery. The length || of a piece of scenery ¢ € C! is the
cardinality |I| of its index set. ¢ := ({_;)sc_1 denotes the reflection of a piece of scenery ¢ € C!
at the origin. Two pieces of scenery ¢ € Z! and ¢’ € Z!" are called strongly equivalent, ¢ = (',
if ¢ is obtained by some translation of (', i.e. I' = I +b for some b € Z, and ¢ = (¢/,;)ier- €
and ¢’ are called equivalent, ( ~ (', if ¢ is obtained by some translation or reflection of (’, i.e.
I' = al +b for some a € {£1}, b€ Z, and ¢ = (¢, )ier- T :Z — Z, T(2) = az + b, denotes
this translation or reflection, then T'[¢] := ¢’ denotes the transport of ¢’ by T’; the same notation
is used for the domains: T[I] = I'. By definition, ¢ < ¢’ means that ¢ = ¢'[J for some J C I'. If
additionally such a subset J C I" and its reading direction (i.e. either ¢ = {'[J or ¢ = (¢'[J)7)
is unique, we write ¢ <1 ¢’. Similarly ¢ C ¢’ (in words: “C occurs in (') means that ¢ = (/[ J
for some J C I'.

identify C with C'. The concatenation of two words w; € C" and we € C™ is denoted by
wiwe € CT™,

Probability distributions: The law of a random variable X with respect to a probability
measure P is denoted by Lp(X). The n-fold convolution of a probability distribution p over R
is denoted by u*".

Random sceneries and random walks: As mentioned before, let ;4 be a probability measure
over Z supported over a finite set M = suppu C Z. Let Qo C ZN denote the set of all paths
with starting point S(0) = 0 and jump sizes S(t + 1) — S(t) € M, t € N. Let Q¢ denote the
law of a random walk S = (S(k))reny with start in 0 € Z and with independent increments
having the distribution p. Furthermore, let £ = (;),cz be a family of i.i.d. random variables,
independent of S, with uniform distribution £(§;) = v over C. We realize ({,S) as canonical
projections of = C% x Q endowed with its canonical product o-algebra and the probability
measure P := v” ® Qq. (The restriction of the random walk paths not to have forbidden jumps
even on null sets is technically convenient.) We assume that E[S(1) — S(0)] = 0 (k € N);
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thus S is recurrent. Furthermore we assume that supp p has the greatest common divisor 1,
thus S eventually reaches every z € Z with probability one. For fixed sceneries & € CZ, we set
P: := 0¢ ® Qo, where d¢ denotes the Dirac measure at £. Thus P is the “canonical” version of
the conditional probability P[ - |{]. We use the notations P¢ and P[ - ] as synonyms; i.e. we
will never work with a different version of the conditional measure P[ - |¢] than Pe.

Filtrations: We define the filtration F := (F,)nen, Fn = 0(&, (S(K))k=0,..n) over Q. We
further introduce the filtration G := (G, )nen over CY, where G, is the og-algebra generated by
the projection map CN — ClO |y x[[0, n].

Observations of the scenery along the random walk and shifts: Let x = (xn)nen :=
(£5(n))nen. We sometimes write simply x = & o S; this is to be understood in the sense x(w) =
(w) o S(w) for all w € Q. Let H = (Hp)nen, Hn := 0(xx,0 < k < n) denote the filtration
obtained by observing the scenery along initial pieces of the random walk. We define the shift
operations 6 : ct — CN? (XH)RGN = (Xn+1)n€Nv and © :  — €, (ga S) = ((£n+5(1))n627 (S(k +
1) — S(1))ken); thus x 0 © = 6 o x. Intuitively, © spatially shifts both the scenery and the
random walk by the location S(1) of the random walk after one step, and it drops the first time
step. One observes £ ~ £ 0 O.

Admissible paths: A piece of path 7 = (7;);er € 7! over an integer interval I is called
admissible if w1 —m € M for all {i,i + 1} C I. For finite I # 0, Tmins and mpax are
called starting point and end point of 7, respectively. We set TimeShift(r) := (m;—1)icr+1. By
definition, the length |7| of the path 7 is the cardinality |I|. For x,t > 0 let AdPaths(z,t) denote
the set of all admissible pieces of path 7 € [z, z] 0.

Ladder intervals and ladder paths: Let[_, := max M, [ := | min M|; thus [_, and [ are
the maximal possible jump sizes of S to the right and to the left, respectively. We abbreviate
[ :=max{l_,l_} and h := [|M|. By definition, d-spaced intervals (d € N) are sets of the form
IN(a+dZ) with a bounded interval I and a modulo class a+dZ € Z/dZ. |_,-spaced intervals are
also called right ladder intervals. Similarly, [._-spaced intervals are called left ladder intervals.
By definition, a right ladder path is a piece of path that steps through the points of some right
ladder interval in increasing order. Similarly, a left ladder path is a piece of path that steps
through the points of some left ladder interval in decreasing order.

Reading words from pieces of sceneries: For I = {ip,... i1} CZ with ig < ... < ip_1
and a piece of scenery ¢ € C!, we define (_, := (Cig Jk=0,...n—1 € C"and (— = (G, 4 )k=0,..n—1 €
C"; thus (. and (. are the words obtained by reading { from the left to the right and from the
right to the left, respectively. The right ladder word of a scenery & over a right ladder interval I
is defined to be (£]1)_; similarly one defines left ladder words (£]J)— over left ladder intervals
J.

2.1 Conventions concerning constants

Four fixed “sufficiently large” positive integer parameters co, ¢1, a, and ng globally play a role.
The meaning of these parameters is explained below at the location of their occurrence; at this
point we only describe their mutual dependence:
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e ¢y € N is chosen first sufficiently large; say co > c3i2(|C|, ).

e Then ¢; € 2N is chosen to be even and sufficiently large; say c¢; > ¢ (ca, |C|, 1).

min(

e Then a € N is chosen to be sufficiently large; say a > o™ (¢q, |C|, ).

e Finally ng € 2N is chosen to be even and sufficiently large; say ng > nS"(c1, o, |C], i)
We do not specify explicitly here how large the allowed lower bounds c§i®, c[in o™i% and
nf)nin actually need to be; but we emphasize that the constructions below will work if they are
sufficiently large.

All other positive constants are denoted by “c;” with a counting index 7 > 2; they keep their
meaning globally during the whole article. Unless explicitly stated otherwise, these constants
may depend only on the number of colors |C| and on the jump distribution p of the random

walk; in particular they may depend on the upper bound [ of the jump size, but not on ng.

3 Skeleton of the Reconstruction Procedure

Our first “ingredient” theorem reduces the problem of almost surely reconstructing sceneries to
the following simpler one: We only need to find an auxiliary reconstruction procedure Ag which
may fail to give an answer, and it may sometimes even give the wrong answer, if only giving
the correct answer is more probable than giving a wrong one. Roughly speaking, we apply the
auxiliary reconstruction procedure Agp repeatedly to the observations with initial pieces dropped,
taking the answer of the majority as our result; here ergodicity of the observations plays a key
role.

Theorem 3.1 If there exists a measurable map Agp : CN — C? U {fail} with

PlAg(x) # fail, Ap(x) =~ £] > P[Ap(x) # fail, Ap(x) # &, (3.1)

then there exists a measurable map A : CN — C% such that
PlAG) ~ € = 1. (3:2)

The auxiliary reconstruction procedure Ag gives the output “fail” if one does not see a long
block of 1’s in the initial piece of the observations. Thus failure of Agp is a very frequent event;
however, non-failure still occurs with a positive but small probability, and conditioned on this
event the most probable answer will be the correct one. Roughly speaking, when we apply Ap
again and again to the observations with initial pieces dropped, we will finally see sufficiently
many long blocks of 1’s to make the whole procedure work correctly.

The required long block of 1’s in the initial piece should have length ngo for some sufficiently
large but fixed even number ng € 2N. The parameter ng, which parametrizes the size of this
required block, is chosen fixed but large enough (see Subsection 2.1).

Definition 3.2 With the abbreviation J; = [—2In3°,2In2], we define the following events:

Eg(k) = {xn=1foralln <k} forkeN, (3.3)
{There is an integer interval Jy C Jy with |Jo| > né such that} (3.4)

BigBlock
1ebloc &[Jo = (1)jes, is a constant piece of scenery with value 1.
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Let Pg denote the image of the conditional law P[-|Eg(n2°)] with respect to the shift O™
Furthermore, we define the conditional law

P := Pg[- |BigBlock]. (3.5)

The event Ep (ngo) occurs when we see a large block of 1’s in an initial piece of the observations,
while BigBlock occurs when there is a large block of 1’s close to the origin in the (unobservable)
real scenery €.

We describe the intuitive meaning of P: After having seen a large initial block of 1’s in the
observations, we drop this initial piece and take the present point as our new starting point.
Since then a large block of 1’s close to the origin in the unobservable real scenery £ is typical, it
does not change much when we even condition on this (unobservable) event.

The next theorem shows that whenever we have a reconstruction procedure A’ that works
sufficiently probably with respect to the modified measure P, then there exists the auxiliary
reconstruction procedure Ap that we needed above:

Theorem 3.3 Assume that there exists a measurable map A’ : CN — C% with

~ 2
PIA() ~¢] = 3. (3.6)
Then there exists a measurable map Ag : CN — C% U {fail} such that

P[Ap(x) # fail, As(x) = £] > PlAs(x) # fail, Ag(x) # &]. (3.7)

The reconstruction function A’ required by the last theorem is built by putting together a
hierarchy of partial reconstruction algorithms A™, m > 1. The partial reconstruction algorithms
A™ try to reconstruct longer and longer pieces around the origin; the relevant length scale in
the m-th hierarchy is given by 2™, where n,, is defined as follows:

Definition 3.4 We define recursively a sequence (N, )men: no was already chosen above; we
set

Ny = 20V7m] (3.8)
The partial reconstruction algorithms may sometimes, but not too frequently, give the wrong
answer:

Theorem 3.5 Assume that there exists a sequence (A™)m>1 of measurable maps A™ : CN —

Cl=52"m.5:2" ] cch that
o0

U (Em)c

m=1

P <

1
<= 3.9
37 ( )

where

E™ = (][-2", 2] < A™(y) < €[ - 2", 9 2"}, (3.10)

Then there exists a measurable map A’ : CN — C% such that the following holds :

PAG) =€ > - (3.11)
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Before describing it formally, let us intuitively explain how the hierarchy of partial recon-
struction algorithms A™ is constructed: The A™ are built recursively in a “zig-zag” way simul-
taneously with a hierarchy of stopping times:

These stopping times have the task to estimate times when the random walk .S is sufficiently
close back to the origin, at least up to a certain time horizon. For this estimation, one may
use only an initial piece of the color record x. To find “higher level” stopping times, we try to
reconstruct a piece of scenery both at the present candidate location and at the starting point,
using a “lower level” partial reconstruction algorithm. If the two obtained pieces of scenery have
a high overlap with each other, then there is a good chance that the candidate location and the
starting point are close to each other. This is the “zig” part of the “zig-zag” recursion.

The “zag” part of the recursion uses the stopping times as follows to construct a “higher
level” partial reconstruction algorithm A™: Whenever the stopping times indicate that one
might be sufficiently close to the origin, one collects “typical signals” which one expects to be
characteristic of the local environment in the scenery. The data obtained in this way are then
matched together similarly to playing a puzzle game. This procedure is the heart of the whole
reconstruction method.

To get the whole construction started, one needs some initial stopping times which indicate
that one might be sufficiently close to the origin. A simple way to get such times is the following:
Whenever one observes a sufficiently long block of 1’s in the color record, then one has a high
chance to be close to the origin. (Remember: We conditioned on seeing a long block of 1’s at
an initial piece of the color record.) This is the reason why we introduce the modified measure
P, since with respect to P one can be (almost) sure to have a big block of 1’s in the scenery
close to the origin. However, the such constructed stopping times are not reliable enough to
base the first partial reconstruction algorithm on them. Instead, these stopping times are used
as ingredients to construct more reliable stopping times.

We treat the “zig” part and the “zag” part of the recursion separately, starting with the
formal specification of the “zig” part: Given an abstract partial reconstruction algorithm f, we
build stopping times out of it:

The specification of the stopping times depends on a fixed, sufficiently large parameter a € N.
Informally speaking, a influences how many stopping times in each step should be valuable, and
what the time horizon for the m-th partial reconstruction algorithm in the hierarchy should be.
The parameter « is chosen fixed but large enough; recall Subsection 2.1.

Definition 3.6 Let m > 1. Let a function f : CN — CI=52""52""] be given. Assume that f(x)
depends only on x[[0,2 - 212emm [ We define the random set

Ty(x) = {t € [0,2120mm+1 — 2. 21207 | Jpy € €22 w < f(x) and w < f(0'(x)) }. (3.12)

We define a sequence Ty = (Tt ), of G-adapted stopping times with values in [0, 212anm+1],
Let t(0) < ... <t(|T¢(x)|—1) be the elements of T ¢(x) arranged in increasing order. For k € N,

we set
£(2- 92nmi1f) 4 2. 212mm  r 9. 92k < |Ty(y)],

Tf’k(X) = { 2120mm 1 otherwise. (3.13)

Observe that the stopping times 7t(x) depend only on x[[0, 212amm+1].
In the next definition, we introduce events FE ; they specify what the stopping times

m
stop,7?

should fulfill: There should be sufficiently many of them, they should be separated by at least
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2. 22"m and they should stop the random walk sufficiently close to the origin. Furthermore,
given any abstract partial reconstruction algorithm f, we define an event E™"
whether f correctly reconstructs a piece of the scenery around the origin.

Definition 3.7 Let m € N.

reconst f7 it measures

1. Given a sequence T = (T)ken of G-adapted stopping times, we define

ganm
Eop,r - ﬂ {me(x) < 2120 |S(7i(x))| < 2, 75 (x) + 2 - 22" < 7y(x) for j < k}.
(3.14)
2. We set for f:CN — ¢cl=52"m.52mm].
reconst,f = &[[=2"m. 2" < f(x) < €[[-9 - 2", 92"} (3.15)

Roughly speaking, the following theorem states: there are stopping times “to get started”
which solve their task with high probability:

Theorem 3.8 There exists a sequence of G-adapted stopping times T' = (Tk})keN with values
in [0,2120™] and a constant ¢4 > 0, such that

P (Blop )| < 7™, (3.16)

The next theorem states that the “zig”’-part of the construction works correctly with high
probability. As a premise, the “zig”-part needs the underlying “lower level” partial recon-
struction algorithm f to work correctly when f is applied at the beginning. Furthermore, the
“zig”-part needs f to have a sufficiently high probability to work correctly on the given scenery
& whenever it is applied again. Informally speaking, the reason is: In the “zig”-part we can only
reconstruct, if we know where we are. The idea is to start the whole lower-level reconstruction
procedure again whenever we want to find out whether we are close to the origin. As mentioned
before, if the result has a large overlap with the piece we have already reconstructed, we can be
rather sure that we are close to the origin.

Theorem 3.9 Under the assumptions of Definition 3.6, we have that

1 —nm
(E;?(j;—) Tf) N Ereconst f N { [ reconst, f ‘ §] _}:| <e L, (317)
We remark: in the “zig part” (Theorem 3.9) we work with the event ESTJ;ITf, while in the “zag

part” (Theorem 3.10 below) we work with Estop ;-

Intuitively, in order to successfully recognize locations close to the origin, we need not only
the “lower level” reconstruction to work correctly the first time (i.e. EZ o s heeds to hold),
but also the scenery must be such that whenever one starts the “lower level” reconstruction
again, one has a sufficiently high chance to reconstruct again a correct piece; this is why we need
the event “P[E[ o €] >1/27.

Finally the heart of the reconstruction algorithm consists of the “zag”-part: there are partial
reconstruction algorithms Alg™™ which take an initial piece of the color record as input data,
and abstract “lower level” stopping times 7 as “argument procedures”. Intuitively, the following
theorem states that the algorithms Alg™™ reconstruct correctly with high probability, provided

the “argument procedures” 7 fulfill their specification Eg, -
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Theorem 3.10 For every m € N, there is a map
Algnm : [0, 2120mm N o ¢22E _, pl=o 2 52m] (3.18)

such that for every vector T = (T1)ren of G-adapted stopping times with values in [0,21297m] one
has

P ( ;Zconst,Alg”m (7—,-))C N E$0p77:| < cpe” Onm (319)
for some positive constants cg and cs, where Alg"™ (7,-) : x — Alg™™ (7(x), x[[0,2 - 212e7m[).

To motivate the allowed range for the abstract arguments 7 in this theorem, recall that T’ (x)
in (3.13) take their values in [0, 220mm+1],

Note that Theorems 3.9 and 3.10 use the original probability measure P, while Theorem 3.8
uses the modified probability measure P.

An algorithm Alg” is defined in the next Section 4, but its correctness, i.e. Theorem 3.10, is
proven in Section 6, below. Theorems 3.9 and 3.8 are proven below in separate Sections 7 and 8,
respectively. Right now we show how to use these three theorems: Provided these three theorems
are true, the hypothesis of Theorem 3.5 holds, i.e. there exists a sequence of measurable maps
A" CN — cl=52"m52" ] guch that (3.9) is valid. We take the maps Alg™ and the sequences
of stopping times T, Ty from Theorems 3.8, 3.9, and 3.10 to define recursively maps A™. Then
we prove: the properties guaranteed by Theorems 3.8, 3.9, and 3.10 imply that the sequence of
maps (A™),,>1 satisfies (3.9). We are ready to describe the “zig-zag”-recursion formally:

Definition 3.11 We define A™ : CN — CI=>2"52"] gnd sequences T™ = (T{")ren of G-
adapted stopping times by simultaneous recursion over m > 1:

o T is chosen using Theorem 3.8.
o A™(x) := Alg"™ (T™(x), x[[0,2 - 2122mm ), with Alg"™ taken from Theorem 3.10.

o T™FL .= T ym, with the notation of Definition 3.6.

Recall Definition (3.10) of the events E™. From now on, we use our specific choice for A™
from Definition 3.11. Using (3.15), we rewrite (3.10) in the form

E™ = E;Zconst,.Am' (320)

Theorem 3.12 For the sequence (A™)m>1 as defined in Definition 3.11 and (E™)men as in
(8.20), the bound (3.9) is valid.

All theorems of this section together yield the proof of our main theorem:

Proof of Theorem 1.1. By Theorem 3.12, (3.9) holds; then (3.11) holds by Theorem 3.5;
moreover (3.7) holds by Theorem 3.3; finally Theorem 3.1 implies the claim (1.1) of Theorem
1.1. =
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4 Heart of the Reconstruction Procedure:
Definition of the Algorithm Alg"

This section contains the heart of the reconstruction procedure: for every n € N, we define an
algorithm Alg™; it is designed to reconstruct long pieces of scenery with high probability. In
Section 6 below we show that it fulfills the formal specification given in Theorem 3.10.

Informally speaking, the observation y allows us to collect many pieces of “puzzle words”.
These puzzle words are chosen to have size cin with a fixed parameter c;; recall Subsection
2.1. To obtain them, we collect triples of words (w1, ws,ws) which occur in sequence in the
observations y soon after a stopping time 7(k); an initial piece of y is represented below by
a formal argument 7. We put those words ws into our puzzle which are already uniquely
determined by w; and ws. This means that w; and ws should be be very “characteristic signals”;
if w; and w3 could be read at very different locations in the scenery close to a stopping time,
then it is improbable that they will enclose always the same word ws. Frequently, wo turns out
to be a ladder word: Whenever one reads a wo in the context wjwsws along a non-ladder path
sufficiently close to the origin, one reads with high probability a different word w}, in the context
wiwhws, too, along a different path with the same starting point and the same end point; but
then ws is not collected as a puzzle word.

Here is the formal construction: We take input data 7 € [0, 22N and n € C* . A side
remark: although for formal reasons there are infinitely many 7(k) given in the input data, the
construction below actually uses only the first 24" of them.

212(171,

Definition 4.1 We define for m > 0 the random sets:

PrePuzzle"(r,n) = (4.1)
{ (w1, wa, w3) € (™3 | 3k € [0,2°"[: wiwows T n[[r(k), T(k) + 22”]} ,

Puzzlef' (1,n) := (4.2)

{ (w1, w2, w3) € PrePuzzle™(7,m) | V(w1,wh, ws) € PrePuzzle™(1,n): wh = wa},

Puzzlefy(1,n) == (4.3)

{we € C™ | Jwy, w3 € C": (w1, w2, w3) € Puzzlef(1,7n)}.

Let us informally explain why for the reconstruction to work we need more colors then possible
steps of the random walk: A ladder word should be very characteristic for the location where
it occurs, at least within a large neighborhood of the origin. To illustrate this, take a “typical”
finite sequence ci,...,¢ of colors in C in the observation y. Look at all locations x in the
scenery £ where one can observe this sequence cy, ..., ¢ of colors by following some admissible
path starting at . As | — oo, we want that these locations x to get very rare. However, this
will not be the case if there are too few possible colors, compared to the number | M| of possible
steps of the random walk. More formally, the condition |C| > |M] on the number of possible
colors is used in Lemma 6.38, below.

Let us explain the idea behind the following constructions: Although many of the words ws
in “Puzzlerr” turn out to be ladder words of a central piece in the true scenery £, some of them
are not: There are “garbage words” in the puzzle. We play a “puzzle-game” with the words in
“Puzzlert”: We try to fit larger and larger pieces together. In order to distinguish “real” pieces
from “garbage” pieces, we need some “seed words” which are guaranteed (with high probability)
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not to be garbage words; every piece that fits to a piece containing a seed word has a high chance
not to be garbage, too. This is what the set Seedy; defined below is good for. We identify “seed”
words as “puzzle” words that occur in the observations almost immediately after a stopping
time 7(k), when we expect the random walk to be close to the origin.

Recall the abbreviation h = I|M|. Formally, we proceed as follows:

Definition 4.2

Seed{ (7,7) := (4.4)
n Jk € [0,2°"[ 35 € [0, Tenld] -

{(wla w27w3) € PUZZ|eI (7‘, 77) ’ Wiwaws = n[(,]_(k,) +j + [0’ 36177,[) )

Seed(i(7,7n) := {way € C™ | (w1, w2, ws3) € Seed{'(1,71)}, (4.5)

Seed{y(1,7n) == (4.6)

" Jv € Seedyy(T,7) :
{u € Seedyy (7, 1) ‘ (ul([0,canl. ] N1_Z))—. = (][0, exnl_] N1_Z))._ }

Neighbors™ (7, n) := (4.7)
{(wl,wg) € (Co™? | 3k € [0,2°"[,w € C"L - wiwwy T nf[r(k), (k) + 22”]}.

Let us explain what “Seedrr;” is intended for: We need to identify the orientation of the pieces
(whether they are to be read “forward” or “backward”). This task consists of two problems:
The identification of the relative orientation of two pieces with respect to each other, and the
identification of the absolute orientation with respect to the “true” scenery £. Of course, we
have no chance to identify the absolute orientation if the random walk is symmetric; we even
bother about identifying the absolute orientation only in the very unsymmetric case [, # ..
The set Seedryr helps us to identify the absolute orientation in this case: Suppose we read every
[_-th letter in a word from the left to the right, and every [._-th letter in the same word from
the right to the left; then every [_,l._-th letter appears in both words, when at least one letter
is read both times. This turns out to be characteristic enough to identify the reading directions
“left” and “right” in the case I_, # [._. The fixed parameter co influences the length of the
sample pieces in this procedure.

The relation “Neighbors” serves as an estimation for the geometric neighborship relation be-
tween ladder words: ladder words that occur closely together in the observation y are expected to
occur on geometrically neighboring intervals in the “true” scenery £. The next definition defines
a “true” geometric neighborship relation ,. We try to reconstruct the corresponding “true”
neighborship relation for ladder words in a piece of £ using only the “estimated” neighborship
relation “Neighbors”.

Recall that p** denotes the k-fold convolution of x; in particular

k
supp p** 1= { > s
=1

Definition 4.3 Let I,J be right ladder intervals. By definition, I >, J means |I| = |J| = cin
and minJ — max I € supp u**. Similarly for I',J" being left ladder intervals, I' <, J' means
|I' = |J'| = c1n and max J' — min I’ € supp p*".

Vi: s; € supp ,u} . (4.8)
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The next definition is the heart of our method: We describe how to obtain reconstructed pieces
of sceneries. All pieces of scenery w € CI752"52"] are tested as candidates in a sequence
of “Filters”: Reconstructed ladder words should be in “Puzzler;”, the “estimated” and the
“reconstructed” neighborship relation should be consistent with each other, the reconstructed
pieces should contain “Seedp;;” words, and no piece of the puzzle should be used twice.

Only candidate pieces that pass all Filters are considered as a solution of the partial recon-
struction problem.

Definition 4.4 Let Filter]'(1,n), i = 1,...,5, denote the set of all w € Cl=52"52" which fulfill
the following condition 1.,...,5., respectively:

1. For every right ladder interval I C [—5-2",5-2"], |I| = cin, one has (w[I)_, € Puzzlefj(7).

2. For all right ladder intervals I,J C [=5-2"5-2"]:
if I>n J, then (w[I)—, (w[J)—) € Neighbors™(r, 7).

3. For all right ladder intervals I,J C [-5-2",5-2"], |I| = |J| = cin:
if (w[I)=, (w[J)=) € Neighbors™(1,n), then there is ¢ € N such that I >, J + ql_,.

4. For every right modulo class Z € 7. /17 there exists a right ladder interval I C Z N [—2 -
2" 22" such that (w[I)_, € Seedf(,7).

5. For all right ladder intervals I,J C [=5-2",5-2"], |I| = |J| = e1n:
if (w[I)— = (w[J)-, then I =J.

We set ;
SolutionPieces™ (7, n) := ﬂ Filter} (7, 7). (4.9)
i=1

The output of the algorithm Alg™ could be any of these pieces w € SolutionPieces”(7,7n); we
choose one of them, if it exists.

Definition 4.5 We define Alg™(7,n) as follows:

e [f SolutionPieces™ (7, n) is nonempty, then we define Alg™(7,n) to be its lexicographically
smallest element.

e Otherwise Alg"(7,n) is defined to be the constant scenery (1);ec[—s5.2n 5.27]-

We could have equally well taken any element of SolutionPieces™(7,7n) in Definition 4.5; we
choose the lexicographically smallest one just for definiteness.

5 Proofs concerning the Skeleton Structure

In this section, we prove most of the theorems of Section 3, which deals with the skeleton
structure.
We start with a quite standard lemma:

Lemma 5.1 The shift © : Q@ — Q, (£,5) — (£(-+5(1)), S(- +1) — S(1)) is measure-preserving
and ergodic with respect to P.
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On page 397 in [9], Kalikov remarks (without proof) that the shift operator in a more general
situation is K, not only ergodic. However, for completeness, we describe a proof of the lemma.
We are grateful to an anonymous referee for a simplification in the subsequent proof of ergodicity.

Proof. The shift © is measure-preserving: Since the distribution of £ is invariant under
(deterministic) translations, and since S(1) is independent of £, we get: £(-+S(1)) has the same
distribution as £. Furthermore, (S(t+1)—95(1))en has the same distribution as S. Since £, S(1)
and (S(t+1) —S(1))sen are independent, £(-+S(1)) and (S(t+ 1) —S(1))sen are independent,
too. Consequently ©(&,S) has the same distribution as (&, .5).
To prove that © is ergodic, let A be a O-invariant event. Given € > 0, there is N € N and an
event Be with P[AAB| < ¢, such that B, depends only on the first N steps S(1),...,S(N)
of the random walk and the piece of the scenery (£(i))_n<i<n close to the origin. Here AAB,
denotes the symmetric difference of sets. Using AA(B.NO "B,) C (AAB,) UO " (AAB,), we
get |P[B.N O "B — P[A]| < 2¢ (uniformly) for all n € N. On the other hand, lim,,_,o, P[B, N
O~ "B/ = P[B]?, since after many time steps with high probability, the random walk is very
far from the origin: lim, .~ P[|S(n)| > C] =1 for all C' > 0, and conditioned on |S(n)| > C for
sufficiently large C' = C'(IN), the events B, and © "B, are independent. Thus

P[A]? = lim P[B.)* = lim lim P[B.N© "B/ = P[A], (5.1)
e—0 e—0n—oo

ie. P[A]€{0,1}. =m

Proof of Theorem 3.1. The idea of this proof is to apply the reconstruction function Apg
to all the shifted observations #*(y) for each k € N. Every time one does this, one gets either a
scenery or the state fail as result.

Given Ap : CN — CZ U {fail} as in the hypothesis of the theorem, we define measurable
functions A]z_—; :CN = C%, k € N, as follows:

e If there exists j € [0, k[ such that Ag(6’(x)) # fail and
{7 € 10,k | Ap (8" (1)) # £, Ap(@" () ~ 4@ () | (5:2)
> {7 € 10k AB(8" (1) # £ai1, Ap(8 () # Ap(07(1) |

then let jy be the smallest 7 with this property, and define A’fg(x) = Ag(67°(x)).

i

e Else define A%(x) to be the constant scenery (1);ez.

Finally define the measurable function A : CN — C% by

Aly) = limp oo .,4]]‘73 (x) if this limit exists pointwise,
X = (1)jez otherwise.

We check that the such defined function A fulfills the claim (3.1) of Theorem 3.1:

Let us give the general idea: by hypothesis (3.1) and an ergodicity argument, ”on the long run”
the proportion of sceneries Ap(#*(x)) (for k& € N) which are equivalent to £ is strictly bigger
than the proportion of sceneries which are not equivalent to £&. More formally, define for k € Z
the Bernoulli variables XE, and XF . .: we set XE  equal to 1 iff Ap(6¥(x)) # fail and
Ap(0%(x)) ~ €. Similarly, prongsce is equal to 1 iff Ag(0%(x)) # fail and Ap(#*(x)) # &.
Define

(5.3)

k— k—
1 , 1
k. 7 k o )
}/sce = E E Xsce and erongsce = E E prongsce (54)
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Observe that if Y* > Yk

sce wrong sce
sequences (X% )r>0 and (Xvkvmng sce)k>0 are stationary and ergodic, since they can be viewed as
a measurable function of the sequence k — ©%(¢, ). Note that & ~ £(- + S(k)). By the ergodic
theorem, we have almost surely:

holds, then AK(x) ~ . As a consequence of Lemma 5.1, the

vE EF P [Ap(0F(0) # tail, Ap() ~¢] | (5.5)
Yv}xfrongsce ki’o P [AB(ek(X)) 7£ fail, -AB(X) # f] . (5'6)

Thus by the assumption (3.1) there exists a.s. a (random) kg such that for all & > ko we have
YE, > lejrong sce and hence A% (y) = Alfgo (x) = &; recall that we chose the smallest possible jp in
the definition of A%. Thus a.s. A(x) =& m

The following lemma tells us that a large block of 1’s in the real scenery is very probable

whenever we see a large initial block of 1’s in the observations. It is proven in Section 8.1, below.
Lemma 5.2 There exists c3 > 0 such that Pg [BigBlock] > 1 — e~¢3m0°,

Proof of Theorem 3.3. Assume A’ : CN — C% is a measurable map satisfying (3.6):

Pg[A'(x) ~ & |BigBlock] > % (5.7)
So,
Pg [{A'(x) =~ £} N BigBlock] > §PB [BigBlock] . (5.8)

By Lemma 5.2 it follows, since ng is large enough (see Subsection 2.1):

, 2 o2y 1
&> (11— 3 —. .
PRIA () ~ € = 5 (1= emmt) > 2 (5.9)
Now, by definition of Pg,
Pl A(x) ~ ¢ =P [A’ (x o @n?f’) ~ oo EB(ngO)} . (5.10)
Obviously & o om’ ~ £, Thus
/ n2%\ 20 1
P[A (Xo@o)fv{)EB(no )}>2. (5.11)
We define Ag : CN — CZ U {fail}:
_f A(xo©m") if Eg(n2®) holds,
As(x) = { fail otherwise; (5-12)

this is well defined since Eg(ng’) € o(x). By (5.11), the such defined Ag satisfies (3.7). m

The following lemma claims that P is absolutely continuous with respect to P, and it provides
an upper bound for the Radon-Nikodym derivative dP/dP. This lemma is also proven in Section
8.1, below.

Lemma 5.3 For all events E C Q we have

P(E) < |c|¥’+1 P(E). (5.13)
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Proof of Theorem 3.5. For pieces of scenery v, ¢, we define the piece of scenery ®(¢, ¢) as
follows: If ¥ <1 ¢, then ® (1), ¢) denotes the unique piece of scenery with ®(v, ¢) ~ ¢ such that
P C ®(, p); otherwise we set (1, ¢) := ¢. We take A™ as in the hypothesis of the theorem
and y € CN. With the abbreviation £ := A™ (), we define recursively

&= g (5.14)

¢ =@M, (5.15)
, . lim,, o0 "™ if this limit exists pointwise on Z,

A0 { (1)jez else. (5.16)

(By convention, a sequence (¢™),en of pieces of sceneries converges pointwise to a scenery ( if
the following holds: liminf,, . domain({™) = Z, and for every z € Z there is m, > 0 such that
for all m > m, one has (" (z) = ((z).) Being a pointwise limit of measurable maps, the map
A’ : CN — C” is measurable. For the purpose of the proof, we abbreviate §m = L[[-2"m, 2mm]

and Em =&[[-9-2",9-2"] and we define the events

o= {em & (5.17)
We claim:
1. liminf,, o ET}, holds P-as.,
2. If the event liminf,, .o EE N(o_; E™ occurs, then A'(x) = &.

These two statements together with the hypothesis (3.9) imply the claim (3.11) of the theorem.

Proof of claim 1.: By Lemma 5.3 we may replace “P-a.s.” in the claim by “P-a.s.”. If
I # Iy are fixed integer intervals with |I1| = |I3|, then P[]} ~ &[3] < 2c10e~ 3 holds for
some constants c12,c13 > 0, even if I; and I are not disjoint. (See also the similar Lemma 6.33,
in particular estimate (6.66), below. The factor 2 makes the notation consistent with this lemma;
recall the binary choice: &[I1 ~ £[Is means {[I} = £[Is or {1} = ({[12)7.) We apply this for
I = [-2"m,2""] and all integer intervals Iy C [—9-2"m+1 9.2"m+1] with |[;| = |I3| = 22" 41,
I # Io; there are at most 18-2"m+1 choices of I. We obtain P[(E]g,)¢] < 18-2"m+1 2c1ge 2132
which is summable over m; recall 1,11 = 0(2"™) as m — oco. Hence (E{}, )¢ occurs P-a.s. only
finitely many times by the Borel-Cantelli lemma; this proves claim 1.

Next we prove the second claim: By the assumption made there, there is a (random) M such
that the events E7g, and E™ hold for all m > M. Let m > M. In the considerations below, we
use several times the following rule: For pieces of sceneries «, (3,7, d:

Ifaxpf8<xvy=<dand a <14, then 8 <1 . (5.18)

In particular, this applies to

<1 € and €mgem €T g et g et et (5.19)
we obtain ™ < ™. By the definition of (™ and ®, we know (™ = £™; hence we obtain
(™ <1 €™FL Using the definition of ® again, we see (™ C ®(¢™, &mH1) = ¢™*L. Using (5.18),
(5.19), (™ a2 &™, (ML & ¢mFL again, we get

(M1 & <0 ¢ & and ¢ €T (5.20)
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Let W™ : Z — Z, m > M, denote the unique translation or reflection that maps ¢ onto a
subpiece of €. As a consequence of (™ C (™t " C EmH, and (5.20) we see that h™ does
not depend on m for m > M. Hence "™ maps (¢ := |J,,~, (" to a subpiece of & = J,,~ e,
thus ¢ < €. In fact the domain of ¢ is Z; to see this we observe that domain(¢) contains all
(h™)~![domain(€™)] = (h™)~1[—9 - 27,9 - 2"m] which cover all of Z. To summarize, we have
shown that (¢"),,>m converges pointwise to a scenery ¢ ~ &; thus A'(x) = ¢ ~ & by the
definition of A’(x). This finishes the proof of the second claim and also the proof of Theorem

3.5. m

Definition 5.4 We define events of sceneries

2= {€ec®| P[(Blopr) | €] sememo2), (5.21)
Zp = ﬁ {g ect |EPE™| g > % then P [ () N E™ | €] < e—nm+1/2}
m=1
= ﬁ {5 ect|p [(EQ(;}TW)C NE™N {P [E™|¢] > %} ‘ g} < emmm1/2 } ,(5.22)
m=1
Zu = () {€€CP| PIE™E N By |€] < e, (5.23)
= = EnEinEm (5.24)

where c5 and cg are taken from Theorem 3.10 and c4 is taken from Theorem 3.8.

Note the similarity between these events and the bounds in (3.16), (3.17) and (3.19). The
following lemma provides a link between bounds with and without conditioning on the scenery

&

Lemma 5.5 Let A be an event, r > 0, and Q be a probability measure on Q such that Q[A] < r2.
Then
QIRAE] > r] <. (5.25)

Proof of Lemma 5.5. This follows directly from

22 Qu)x [ QIAIE dQ = rQ [QLAIE] > 7). (5.26)
{Q[AIg]>r}

Lemma 5.6 For some constant c14 > 0 it holds:

Pl¢ ¢ 5] < emcumo, (5.27)
Proof of Lemma 5.6. Using the bound (3.16), Lemma 5.5 for Q = P, the fact P[- | £] =
PJ- | €], and the definition (5.21) of =i, we obtain for a sufficiently small constant c¢;4 > 0

—C14M
e 14710

PlEgE] <eom/? < ——yj

(5.28)
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recall that ng was chosen large enough, see Subsection 2.1. As a consequence of the bounds
(3.17) and (3.19) we know

|
P (EQS;)}T"ZH)C”E"I“{P[ET”\{] > 5}] < e, (5.29)
P[(Em)Cm STJop,Tm] < 056_66nm- (530)

We obtain by the bound (5.29), Lemmas 5.3 and 5.5 with @ = P, and (5.22):

—C14M,
e 1410

o
Ple¢sn < |c|8+1Ple ¢ =) < [c8 1 Y emmmin/2 <

m=1

(5.31)

Here we used again that ng is large, and that (n,,)men grows fast; see Definition 3.4. The same
argument yields, this time using (5.30) and (5.23):

e —C14M0

15 [5 ¢ EIH] < ’C|4lngo+1p [é‘ ¢ EHI < |C‘4ln00+1 Z 1/2 706nm/2

(5.32)

The combination of (5.28), (5.31), (5.32), and (5.24) proves Lemma 5.6. =

Lemma 5.7 For all £ € = and all m € N the following holds for some constants c15 > 0,
c1g > 0:

m
PE™|&>1-) cige ™ > % (5.33)
k=0
and
P[E™\ E™! | €] < ¢rgec1smm+1, (5.34)

Proof of Lemma 5.7. Let £ € E. We prove (5.33) and (5.34) simultaneously by induction
over m: For m = 1 we obtain, since £ € =1 and £ € Zyyy; see (5.21) and (5.23):

PE' ¢ > PlEg,,m | €~ PUE) NE | ¢
1
> ] — e cno/2 _ 1/2 ec6m/2 > 1 Z cige” P >

1

X (5.35)
m=0

for some constants cyg, c15; recall that ny > ng and ng is large enough by Subsection 2.1. Thus

(5.33) holds for m = 1. Let m > 1. Using £ € =y, (5.22), and our induction hypothesis (5.33),

we see P[(E:;;;leH) NE™| €] < e ™m+1/2, Hence we obtain (5.34), using & € Zyyy and (5.23):

P[Em\Em-H ‘g] < P (Em—H) n gl

stop,Tm+1

g] 4P [(Em+1 ) mEmM

stop,T™m+1

< cj;)/Qe_CG"”“”l/2 e TMmA1/2 < o pe ML (5.36)

Consequently we get, using our induction hypothesis (5.33) again:

m+1
PE™™ ¢l > PE™|&—PET\E™ [>1-) cge ™ >
k=0

; (5.37)

N | =

this completes our induction step. =
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Lemma 5.8 For some constant ci7 > 0 and for all £ € 2,

o

U (Em)c

m=1

p

g] < e, (5.38)

Proof of Lemma 5.8. By Lemma 5.7 we have for £ € =:

k

U (Em)c

m=1

k k
<P[EY [+ ) PET\E™! <) cipe s < e, (5.39)
m=1

m=0

P §

where c17 < ¢15 is a small positive constant; recall that ng is large. In the limit as £ — oo, this
yields the result (5.38). =

Proof of Theorem 3.12. Using Lemma 5.6 we have

o e.9]
PlJE™| < PE¢EI+P|{ceE)n [JE) (5.40)
m=1 m=1
< e C1ano + / Em [¢ 5 P
{¢eE} np 1
_ o
< e U0 4 qup P U (Em)c ¢l.
{e= me1
We bound the argument of the last supremum, using Lemma 5.8:
B oo [e.e]
P JEmy g] = P||J@E™ 5] < o, (5.41)
m=1 m=1
The combination of (5.40) and (5.41) yields, since ng is large (by Subsection 2.1):
e 1
P E™| <ecmumopemammo < o (5.42)
m=1 3

6 Playing Puzzle: Correctness of the Algorithm Alg"

In this section we prove Theorem 3.10 by showing that the Algorithm Alg™ defined in Definition
4.5 fulfills the specification described by this theorem: Let n = n,,, m € N. A remark concerning
notation: Events defined in this section are labeled with an upper index n, not m, since the
“hierarchy level” m plays no role here, in contrast to the “Skeleton” section. Only events that
also occur in the “Skeleton” section keep their old index m. Hopefully, this should not cause
any confusion.

Let 7 = (7;)ken denote a fixed vector of G-adapted stopping times with values in [0,
We abbreviate Input := (7(x), x[[0, 2 - 2127[).

212om] .
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Definition 6.1 We define the following events:

doesit 1= 1&[[—D - 2",5-2"] € SolutionPieces™ (Input)} , (6.1)
o0 | Yw € SolutionPieces" (Input) : 9
all piecesok 5“_211’ 2n] < w= 5"[_9 . 271’ 9. 2n] (6 )
Lemma 6.2
EXI doesit [ Egll pieces ok - E:Zconst,Alg”(T,-) (63)

Proof of Lemma 6.2. When the event E7, ; ;. holds, then the set SolutionPieces™ (Input) is

not empty. Thus Alg"™(Input) is the lexicographically smallest element of SolutionPieces™ (Input).

When the event EJj ..ccok also holds, then {[[—2",2"] 5 Alg"(Input) < £[[-9-2",9-2"]. =
Here is the main theorem of this section; it states that the events K7, i and E

occur very probably whenever the stopping times 7 fulfill their task specified by E

all pieces ok

stop,T

Theorem 6.3 For some constant cg > 0, c5 > 0:

P|E [ stop,T \ (EXIdOESlt N Egllpiecesok)] S 65676671' (64)

This theorem is proven the following three subsections. We split the proof into a purely combi-
natoric part and a probabilistic part. The combinatoric part (Subsection 6.1 below for E”.
and Subsection 6.2 below for E”,

xidoesit
) shows that whenever some more “basic” events (named

all pieces ok
B" below, where stands for a varying label) and Eg,, . occur, then the events EY 4 i
and B

all pieces ok Occur, too. In the probabilistic part (Subsection 6.3 below) we show that these
basic events B are highly probable, at least when Eg, . occurs.
The Proof of Theorem 3.10 is an immediate consequence of Lemma 6.2 and Theorem 6.3.

“ ”

6.1 Combinatorics concerning E7, it

In this subsection, we show that a piece of £ centered at the origin passes all the tests specified
by the Filter;, provided some basic events B" (specified below) hold.

Definition 6.4 For n € N we define the following events:

For every right ladder path m € [-2-122" 2. [2%"] [0:e1n/2[ anq for
sigrl = 4 every admissible piece of path 7' € AdPath(2 - 122", ¢in/2): ) (6.5)
If omr=E&on, then w(ein/2 —1) > 7'(e1n/2 — 1).

For every right ladder path 7 € [—2-122",2 - [22"][0:c17/2[ and for
Bigyr i= | every admissible piece of path 7/ € AdPath(2 - 122" ¢1n/2): . (6.6)
If om=Eon, then w(0) < #/(0).
Let B, and Bio1 be defined just as B and By with “right ladder path” replaced by “left
ladder path” and with “<” and “>7 exchanged in (6 5) and (6.6). We set
i = Bs1grlmBn mBmgll N By

signals sigrr

For every ladder path = € [-2-122",2 - l22"][0"31"[ and for every
Elgnaistt :=  admissible piece of path 7/ € AdPath(2 - 122", ¢in): . (6.8)
If o =¢&on’, then w(cin/2) = 7'(c1n/2).

siglr» (67)
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Lemma 6.5 B" C E"

signals — “signalsII-

Proof of Lemma 6.5. Assume that the event B, .\  occurs. Let m € [—2-122, 2. [227][0.cn]
be a right ladder path and 7’ € AdPath(2-12%",¢in). Assume that £ o = £ o 7/ holds. Looking
at the first half of 7 and 7’ only (with the first points (0,7(0)), (0,7'(0)) dropped), we see
m(cin/2) > n'(cin/2), since B, ) holds. Similarly, looking at the second half of 7 and 7’ only,
we infer m(e1n/2) < 7'(cin/2), since BY,,, holds. Therefore m(cin/2) and 7'(c1n/2) coincide.
The case of left ladder paths is treated similarly. This shows that Enas holds. m

Definition 6.6 By definition, the event Bgnpathw occurs if and only if the following holds:

every admissible piece of path R € [—12-2" 122" 03e1nl oecurs in the random walk S with start
at most 22" time steps after some stopping time 7(k), k < 2°™. More formally:

VR € AdPaths(12 - 2", 3¢1n) 3k € [0,2°"[ 35 € [0,22" — 3cin) : }

all paths,7 *— { TImeSh|ftT(k)+J(R) - S (69)

The following auxiliary lemma helps us to show below that the true scenery & passes the test
Filter;. Roughly speaking, it tells us that sufficiently many ladder words occur in the puzzle.
This is important, since playing our puzzle game would lead to a failure if pieces were missing.

Lemma 6.7 Assume that the event By ains » N Blgnals N Edtop, holds. Let I C [—6-2",6-2"] be

a right (or left) ladder interval with |I| = 3cin, and let wy, wq, ws € CA™ with ({[I)—, = wiwaws
(or (£[1)— = wrwaws in the case of a left ladder interval). Then (w1, wa,ws) € Puzzlef' (Input).

Proof of Lemma 6.7. Assume that [ is a right ladder interval; the case of left ladder intervals
can be treated in the same way by exchanging “left” and “right”. Let I = I U I3 U I3, where I3,
I5, and I3 denote the left, middle, and right third of I, respectively; thus ([1;)— = w;, i = 1,2, 3.
Since the event B} paths,r holds, the straight path which steps through the elements of I from
the left to the right in 3cin steps is realized at least once by the random walk (S(t))¢>0 within
time 22" of a stopping time 7(k), k < 29". Observing ¢ along such a straight path generates the
word wiwows. Thus

(w1, we,ws) € PrePuzzle" (Input). (6.10)

Let w), be such that (wy,w), ws) € PrePuzzle"(Input). In order to prove the claim (w1, wa, w3) €
Puzzlef' (Input) it remains to show: wy = wy. When the event EZ. - holds, the stopping times
of 7(k), k < 2%, all stop the random walk (S(t)):>0 somewhere in the interval [—2",2"].
Within time 22" the random walk moves at most a distance [22". Because of wiwhws €
PrePuzzle™ (Input), the word wjwhws occurs somewhere in the observations at most 22" time
steps after a stopping time 7(k), k < 29". Within time 22" after a stopping time, the random
walk cannot be further away from the origin than 122" 4 2" < 2.[227 since the event Eop.r
holds. Thus there exists an admissible piece of path R’ : [0, 3cin[— [—~2-12%",2-122"] such that
€ o R = wiwhws. Let R :[0,3cin[— I C [-2 122" 2-12?"] denote the right ladder path which
passes through I from the left to the right. We know £ o R'[[0,cin[= £ o R[[0, cin[= wy and
(o R'[[2c1n, 3ein])— = (£ o R[[2c1n, 3e1n])— = w3. Furthermore, the event Ef, 111 2 Bl
holds; see Lemma 6.5. Abbreviating x := ¢;n/2 and y := 5¢in/2, this implies R'(x) = R(z)
and R'(y) = R(y). But R[[z,y] is a right ladder path; thus R'[[z,y] must be the same right
ladder path, since only right ladder paths can travel equally fast to the right as R does. Hence
wy = (§ o R[[e1n, 2¢1n|)— = (£ o R'[[ein, 2¢in])— = wh. This finishes the proof of Lemma 6.7.
n
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Corollary 6.8 Ifthe event By ains NV Blignais Estop,r holds, then {[[—5-2",5-2"] € Filter{ (Input).
Proof of Corollary 6.8.  Assume that B i N Bignas N Eitop, holds, and let Io C

[—5-2",5-2"], |I2| = c1n, be a right ladder interval. Set I} := Iy — cinl_, and I3 := Iy + cinl_;
these are right ladder intervals adjacent to the left and to the right of I, respectively. Thus
I:=1 Ul U I3 is a right ladder interval, |I| = 3¢yn. Since n > ng and ng is large enough, we
obtain I C [—6-2",6-2"]. We set w; := (£]1;)—, i = 1,2,3. We have (w1, w2, ws) € Puzzlef (Input)
by Lemma 6.7; thus we € Puzzlefj(Input). This finishes the proof of Corollary 6.8. m

The following definitions are analogous to the definition of Filtery and Filtery, with the “re-
constructed candidate” w replaced by the true scenery £, and with the domain [—5 - 2" 5 - 27]
replaced by the larger domain [—9 - 2" 9 - 2"]. We insert the corresponding statements for left
ladder intervals, too; this turns out to be useful only in the next subsection.

Definition 6.9

ErrlLeighborI = (611)
For all right ladder intervals I,J C [-9-2",9 -2"): if I >, J, then

((€[1)~, (£[J)—) € Neighbors™(, 7).
For all left ladder intervals I,J C [-9 -2"9 .27 if I <, J, then(~’

((¢[1), (£]J)) € Neighbors™ (7, 7).

EgeighborH = (612)
For all right ladder intervals I,J C [-9-2"9 .27 |I| = |J| = can:
if ((¢]1)—,(&[J)=) € Neighbors™(7,n), then there is ¢ € N such that
I, J+ql..

For all left ladder intervals I,J C [=9-2",9-2"], |I| = |J| = ¢mn: if
((&[1)—, (&]J)—) € Neighbors™(7,n), then there is ¢ € N such that I, J—ql_.

Lemma 6.10 If the event B;ﬁlpathw holds, then the event Egeighborl holds too, and consequently

E[[—5-2",5-2" € Filtery (Input).

Proof of Lemma 6.10. Assume that the event B paths - holds. We treat only the case
of right ladder intervals; the case of left ladder intervals can be treated in the same way by
exchanging right with left, — with «, and >, with «,.

Let I,J C [-9-2",9-2"] be right ladder intervals such that I >, J. We need to prove
((€[1)=, (&[J)=) € Neighbors™(Input). Let ¢; := minl, i, := maxI, j; := minJ, and j, =
max J. Since I'>, J, there exists an admissible piece of path consisting of h+1 = | M|+ 1 points
starting in 7, and ending in j;. Since I'>,J we have |I],|J| = cin. Thus there exists an admissible
piece of path R : [0,2¢cin + h — 1[— [ij, jr] starting at i; and ending in j,; furthermore we can
require that R[[0,cin[ and R[(cin+h—14[0, cin|) are right ladder paths. Set wy = (£]1)_, and
wo = (£[J)_; then & o R = wywws where w € C"~1. Since n > ng holds and ny is large enough,
we have h < ¢1n. Thus the piece of path R has length shorter than or equal to 3cyn. The range

mg(R) of R fulfills rng(R) C [-10-2",10 - 2"], and since By ., holds, the random walk

(S(t))>0 “follows the path” R at least once within time 22" after a stopping time of 7. In other
words, there exists k € [0,2%"[ and j € [0,2%" —2cin — h+1] such that for all i € [0,2cin+h—1]
we have S(7(k) + j+14) = R(7). Thus we get £o S[(7(k)+j+[0,2¢c1n+ h — 1[) = wywws. This
implies that (w1, ws) € Neighbors™(Input) and thus (({[1)—, ({[J)—) € Neighbors™(Input). =
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The following elementary number theoretic lemma serves to replace admissible pieces of path
with more than h steps by admissible pieces of path with A steps, up to a sequence of maximal
steps in one direction:

Lemma 6.11 Let s = (s;)j=1,. .k € M%, K € N. Then there is (rj)j=1,.n € M" with

h K
dori (K —h)l. = s;€l.N. (6.13)
j=1 j=1

Similarly, there is (r})jzly,,,ﬁ e M" with

h

Zr;— K —h)l Zsj e —I_N. (6.14)

Proof. In order to treat (6.13) and (6.14) simultaneously, let [, denote either I_, or —I._. For
a € M let ng denote the number of j = 1,..., K such that s; = a. Let n/, € [0, |l |[N(nq +1-2Z)
denote the remainder of n, modulo I.,. Then )~ .\ n, < h. Choose any list (7;)=1,..n € M
having nj, entries a for every a € M\ {l.} and h — 37 ¢ \q 11y N entries lo,. Set

q:= S Z (ng —n,)(le —a) € N; (6.15)
T aeM

note (I, —a)/l > 0 and ng — n), € |l |N. Then

K
Y (e —s) = nal. —a) (6.16)
j=1 aeM
h
=ql_ + Z n(le, —a) Z —7j),

aeEM

which implies the claim (6.13) or (6.14), respectively. m

Lemma 6.12 If the event Eg,, 111 N Egiop - holds, then the event Ey
consequently £[[—5 - 2", 5 - 2"] € Filtery(Input).

neighbor 1T holds, too, and

Proof. Assume that the events Eg,, ..y and Ef,, - hold. We treat here the case of right
ladder intervals:

Let I,J C [-9-2™9 2" be right ladder intervals with |I| = |J| = cin, and assume
((¢]1)=, (&[J)=) € Neighbors™(Input). We need to show I, J + ¢l_. for some ¢ € N.

Using Definition 4.7 of Neighbors™ and the abbreviations wy := (£[I)—, and ws := (£[J)_, we

see: There is an admissible piece of path R : [0,2cin + h — 1[— Z with the following properties:

e R is realized by the random walk S in during some time interval D C 7(k) + [0,22"],
|D| = 2cin + h — 1, for some k € [0,2°"[. This means: R equals S|D when time-shifted
back to the origin.

e Observing the scenery ¢ along R produces wjwwsy for some w € C"~1;ie.: €0 R = wiwws.
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We know |7(k)| < 27" since the event K, _ holds; thus R takes all its values in [—(2" +
1227), 2" 4 [227] C [-2-12%",2 - 122"], since the random walk cannot travel faster than distance
[ per step. We examine the first cin steps of R: (£ o R[[0,c1n[)—. = w1 = (£[I)— implies
R(cin/2) = min I + ¢ynl_. /2, since the event EZ, .\ 1y holds; note that z := min I + einl_. /2 is
the point in the middle of a right ladder path walking through I. The same argument applies to
the last cin steps of R: (§oR[(cin+h—140,c1n]))— = wa = (£]J)_ implies R(3cin/2+h—1) =
minJ + ¢inl_, /2 =: y; y is the point in the middle of J. The path R travels from x to y in
K := cin+h —1 > h steps, using some step sizes (s;j)j=1,.. K € MK As a consequence of
(6.13) in Lemma 6.11, there is (r;);=1,. n € M" with Z?zl rj + (K —h)l_ — Zjil s; = ql_
for some ¢ € N. Since max] —z = (ein/2 — 1)l and y — minJ = ¢ynl_ /2, we obtain
minJ —maxl =y —z — (cin — 1)l = Zszl sj — (cin — 1)l = E?:l rj — ql—. This means
I>y, (J+ql), as we wanted to show.

Summarizing, this implies £[[—5 - 2",5 - 2"] € Filtery(Input) and the first statement in the
definition of Eighbor 11- Which treats right ladder intervals.

The proof for left ladder intervals can be treated analogously. Altogether, we see that the

” . .
event EneighborII is valid. m

Definition 6.13 We define the event

For every modulo class Z € Z/I_,Z there exists k € [0,2%"] such
ed1 = § that S(7(k) +h) € Z, S[(7(k) + h + [0,3cinl_]) is a right ladder » . (6.17)
path, and S[(7(k)+h+3cinl—+(0,3cinl_]) is a left ladder path.

Lemma 6.14 If the events B B

all paths, =7 B 41 and E;?op; hold, then [[—5-2",5-2"] €
Filter} (Input).

n
signals’

Proof of Lemma 6.14. Assume that the event By e » N Bignais N Bieea1 N Etop,» holds.
Let Z € Z/1_,Z. Since B, 4; holds, there exists a k € [0,2%"[ such that S(7(k)+h) € Z, Ry :=
S[(r(k) 4+ h+1[0,3cinl_]) is a right ladder path, and Ry := S[(7(k) + h + 3cinl— + [0, 3c1nl_])
is a left ladder path. Since Eg, - holds, we know S(7(k)) € [-2",2"]. Thus the random walk S
cannot leave the interval [—2-2",2-2"] during the time interval 7(k)+[h+3cinl—+3cinl_], since
(h+3cinl—+3cinl_)l < 2™, and the random walk cannot travel faster than [ per step. Thus R
and Ry take all their values in [—2-2",2-2"]. Note that the right ladder path R; and the left ladder
path walk Ry traverse precisely the same interval, Ry using step size [_, to the right, and Ry with
step size —I._ back. The same is true when we restrict Ry and Rs to the smaller time intervals
[t1,t)] :=7(k) + h 4+ cinl— 4+ [0, canl—] and [ta, t5] := 7(k) + h+ 3cinl— + 2cinl_, + [—canl_,, 0],
respectively: We have S(t1) = S(t}) =: a, and S(t]) = S(t2) =: b, and ST[t1,t}] is a right ladder
path: it traverses [a,b] from the left to the right, while on ST[t2,t5] it is a left ladder path; it
traverses [a,b] in opposite direction. In particular, reading only every [._th letter in x|[[t1, ¢}]

and only every [_th letter in x[[t2,t5] yield the same word, only in reversed direction:
(T ([t 4] N (1 + 1)) = (€] ([a, 8] N (@ + 11 Z))) = (X[[t2, 5] N (81 +1-Z)) . (6.18)

We consider the words ujugus := x[(t1—c1n+|0, 3cin[) and vivovs := x| (t2—c1n+[0, 3c1n[) with
u;, v; € C™; note that 1 — cin + [0, 3¢1n[C domain(R;) and ta — c1n + [0, 3¢1n[C domain(Rz).
We get (u1,u2,u3), (v1,v2,v3) € Puzzlel'(Input) by Lemma 6.7. Hence we obtain (w;, ws,ws) €
Seed (Input) by Definition (4.4), since the words ujusus and vivevs occur in the observations
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sufficiently close to a stopping time 7(k); more specifically: t; — cin,te —cin € 7(k) 4 [0, 7cinl].
Consequently ug, v2 € Seedj(Input) by Definition (4.5). Finally we observe

(u2[ ([0, canl ] N 1-Z)) . = (£[([a,b] N (a +1-1-7Z)))~ = (v2[([0, conl -] NI Z))—  (6.19)

by (6.18). Thus we have shown ug € Seedpj;(Input), see (4.6). Since ug = & o S[(t1 + [0, cin]),
and since S[(t1 + [0, cin|) is a right ladder path with values in Z N [—2-2" 2 - 2"] this implies
E[[-5-2",5-2" € Filter}(Input). =m

Definition 6.15 Forn € N and and a finite set J C N, we define the following event:

For every 4,j € {1,...,1%}, every i-spaced interval I C [—11 -
2" 11-2"]\ J, and every j-spaced interval J C [—11-2" 11-2"]\J
with |I| = |J| > can holds (§[I)— # (£]J)—, and if I # J, then

E[)— # (&[JT)—.
We abbreviate B™

unique fit = Bgnique fit ((Z)) .

n (j) =

unique fit

, (6.20)

In this section, only the case J = 0 is needed. However, in Section 8 below, the case J # 0
is important, too, due to the presence of a “modified” part of the scenery close to the origin.

Lemma 6.16 If the event B holds, then £[[—5 - 2™,5 - 2™] € Filterg (Input).

unique fit

Proof. Using ¢z < ¢1 (see Subsection 2.1), this follows immediately from Definition 6.15 of
the event B and of Definition 4.4 of Filtery. m

unique fit?

Theorem 6.17 B"

allpaths,TﬂBn mB;edImBn N Eg C EY

signals unique fit stop,7 = “~“xidoesit

Proof. We collect the statements of Lemmas/Corollary 6.5, 6.8, 6.10, 6.12, 6.14, and 6.16 in
the following list:

B ggnals g ggnals 1>

B:llpaths,q— n ngnals n E:‘gop,T - {5[[_5 : 2n’ 5 2n] S Filter?(InPUt)}v

Bgllpaths,f - {£H_5 ' 271’ 5- 271] € F”tergUnPUt)},

Eggnalsll n ESTop,T - {£H75 -2",5- 271] € F”terg(lnPUt)}y

Bgllpaths,'r n B:ignals N BsZedI N Eg?op,r - {5[[_5 : 277,’ 5 277,] € F”terZ(InPUt)}7
anique fit < {&[[-5-2",5-2" € Filter(Input) }.

The theorem is an immediate consequence these statements, using (6.1) and (4.9). m

n

6.2 Combinatorics concerning FJ .cosox

In this subsection, we show that a piece w that passes all the Filter; occurs in the true scenery
& near the origin, provided some “basic” events B" hold.

Definition 6.18 Given a finite set J C N, we define the events

B:Lecognstraight(']) = (621)
For every R € AdPaths(11-2",cin) with R(cin —1) — R(0) ¢ {(cin — 1), —(cin —1)I_}
there is R € AdPaths(12 - 2", ¢in) such that R(0) = R(0), R(cin — 1) = R(cin — 1), and
(R takes at least one value in J,orEoR#Eo R).
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In the case J = 0, we abbreviate Bﬁecognstraight = B?ecognstraight(®>'

For all (w1, w2, w3) € Puzzlef(Input) and every admissible piece of
Egiytadder = { Path R :[0,3cin[— [-11-27,11-2"] with { o R = wjwows holds: » . (6.22)
wy is a ladder word of £[[—11-2",11 - 2"].

Lemma 6.19 We have

B N B C E" (6.23)

n
all paths,r recogn straight = ~only ladder*

Proof of Lemma 6.19.  Assume that the event By i, N Bltcogn straight holds. Let
(w1, w2, w3) € Puzzlef'(Input), and let R : [0,3cin[— [—11-2", 11 - 2"] be an admissible piece
of path with £ o R = wywows. We prove by contradiction that the event E” holds:

only ladder
Assume wy is not a ladder word of {[[—11-2",11 - 2"]. Since Bl straighs 1OldS, there exists

an admissible piece of path R : [c1n,2¢in[— [—11-2" 11 - 2"] such that R(cin) = R(cin) and
R(2cin — 1) = R(2¢cin — 1), but wg # (€ o R) =: w). Let R: [0,3¢cin[— [~11-2",11-2"] be
the admissible piece of path which on [e1n,2c1n] is equal to R and otherwise is equal to R. We
have £ o R = wiwhws. Since B paths, holds, too, this implies that the random walk S follows
the path of R within time 22" from a stopping time of 7(k), k < 2°". The same is valid for R,
maybe with a different stopping time 7(k’). In other words: wiwhws € PrePuzzle™(Input) and
(w1, w2, ws3) € PrePuzzle"(Input). This implies the contradiction (w;, w2, ws) ¢ Puzzlef (Input);

thus we have proved Lemma 6.19. =

Definition 6.20 We define the events

Bgutsideout = (624)
For every admissible piece of path
{R € ([-2-1227,2-12%"]\ [-10-27,10-2"])[0¢17/2; €0 R is not strongly equivalent} ,
to any ladder word of length ¢1n/2 of £[[-9-2",9 - 2"].
:rbmdclass = (625)

For all w € Filter? (Input) and for all right ladder intervals I C [-2-2",2-2"], |I| = ¢;n:
If there is a right ladder interval J, C [-2-2",2-2"] with w[I = £[J,, then

E1([-2,2"] N (Jy + 1-7)) C w[(I +1-2) C€[([-9- 2,927 (J, 1 1.7)), and

if I, =1 and if there is a (left) ladder interval J; C [-2- 2" 2-2"] with (w[I)” = £[J],
then £[([-2",2"] N (J; +1Z)) C (w[(I +1Z))” CTE[([-9-2™,9- 2" N (J; +1Z)).

Informally speaking, the meaning of the event EV . . is the following: If a “reconstructed”

piece of scenery w contains a correct “seed piece” w|[I over a sufficiently long ladder word,
then the whole modulo class generated by I is reconstructed correctly. The reconstruction may
generate the wrong orientation, but this is only allowed if left ladder intervals and right ladder
intervals coincide, and if already the “seed piece” w[I is reversed compared with the true scenery
£.

The next lemma formalizes the intuitive idea of “playing a puzzle game”: We start with a
seed word as reconstructed piece; then we append successively pieces of our puzzle that match to
an ending of the growing reconstructed piece. This procedure continues until the reconstructed
piece is large enough.
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Lemma 6.21 We have

(OB NED NnED

unique fi only ladder stop,T

gutside ou g Eglod class (626)

Proof of Lemma 6.21. Assume that the events on the left hand side of (6.26) hold. We
claim that then E . . holds, too. To prove this claim, let w € Filter](Input), and let I C

[-2-2"2-2"] |I| = ¢1n be a right ladder interval. Assume that J C [-2-2",2-2"] is a ladder
interval. We assume one of the following two cases:

A) J is a right ladder interval, and w[I = {[J;
B) I =1l_ and (w[I)” =¢]J.

We treat both cases simultaneously as far as possible; in order to unify notation, let -~ denote
the reversion operation - in case B and the identity operation in case A. We set Z := J+[_7Z €
Z]1_Z; then it remains to show:

E1(1-2",2") N Z) C (wl(I +1-2))~ C&[([-9-2",9-2" N Z). (6.27)

To prove the right hand side of (6.27), we prove by induction over all right ladder intervals I’
with I C I' C[-5-2",5-2"]:

(w[I')~ C€[([-9-2",9-2"] N Z). (6.28)

Once we have proven this, the right hand side of (6.27) follows from the special case I’ =
[—5-27,5-20 N (I + 7).

The induction starts with I = I’: in this case (6.28) holds since our assumption A) or B),
respectively, implies (w[I)~ C £[([-9-2",9-2"|N Z). For the induction step, assume that (6.28)
holds for some I’. We enlarge I’ by a single new point: let I’ = I'U{i} C [-5-2",5-2"|N(I+I_Z)
be a right ladder interval, i ¢ I'. Let I; C I” be a right ladder interval with |I;| = ¢in and
i € I;. Using w € Filter?(Input) we see wy := (w[I;)—. € Puzzlef;(Input). Hence there are
wy, ws € C™ such that (wq, ws, ws) € Puzzlef' (Input) C PrePuzzle"(Input). Thus wiwows occurs
in the observation x at most 22" time steps after a stopping time 7(k), k < 29" say wiwaws3
is read there in y while the random walk follows an admissible piece of path R : [0,3cin[— Z;
(we shifted the time domain of R back to the origin). Since the event Eg, ~ holds, we have
|S(7(k))| < 2. Within time 22" the random walk cannot travel farther than distance 122"; thus
R has all its values in [—(2" +122"),2" +122"] C [-2-12%" 2.12?"]. Consider the ladder interval
Il''=L\{i} = LNTI, |I]] = cin — 1 > ¢1n/2: the induction hypothesis (6.28) implies (w[I])~ C
E[([—9-2™,9-2"|NZ); say (w[I])~ = £[ D’ for some right ladder interval D’ C [-9-2",9-2"]NZ.

Furthermore, wh := (w[I})_ is a subword of we = (w[I;)— and thus also a subword of £ o R.
Hence we see, using that the event B[ ... .. holds: R cannot take all of its values outside

[—10-2",10-2"]; thus it has all its values in [—10-2" —3¢ynl, 10-2" 4+ 3cinl] C [—11-2",11-2"].
Since the event EJ, 1.4 holds, wa = (w[l;)— is a ladder word of {[[—11-2",11-2"]; say
wy = (€] D)_, for some right ladder interval D C [—11-2" 11 - 2"] (we call this “case A;”), or
wy = ([ D) for some left ladder interval D C [—11-2™,11-2"] (call this “case By”). Thus w}

occurs as a (possibly reversed) ladder word
e as a subword of ({[D)_, in case Ay, or as a subword of ({[D)._ in case By;

e as wh = (([D')_ in case A, or as w) = ({[D’)— in case B.
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Since the event Bgniqueﬁt holds, this implies D’ C D, and furthermore the reading directions
have to coincide: If case A holds, then case A; occurs, and if case B holds, then case B occurs.
Let T : Z — 7 denote the translation (case A) or reflection (case B) that transports w[I; to
§[D. Then T transports w[I] to {[D’, and thus — using once more that B, cq; holds — T
is also the map that transports w[I’ to a subpiece of £[([—=9-2",9 - 2"| N Z) according to the
induction hypothesis (6.28). Hence T transports w[([; UI’) = w[I” to an equivalent subpiece of
&[[—11-2",11-2"]. To see that T'[w[I"] is already a subpiece of £[([—9-2",9-2"|NZ), we proceed
as follows: T maps the nonempty seed interval I C [—-2-2",2-2"] to J C [-2-2",2-2"|N Z; thus
it has the form T'(z) = £z +a with |a| < 4-2". Consequently 7' maps the domain [—5-2",5-2"]
of w to a subset of [—9-2",9-2"]. This shows (w[I”)~ C £[([-9-2",9-2"] N Z), which finishes
our induction step and also the proof of the right hand side of the claim (6.27).

To prove the left hand side of (6.27), we observe that 7! maps [-2",2"] to a subset of
[-5-2" 52", Since T maps I to J, it maps the modulo class [ +1_.Z to Z = J + | 7Z; thus
T~! maps [-2",2"] N Z to a subset of (I +1_Z)N[-5-2"5-2"] = (I +1_Z) N domain(w).
Since T~! maps a subpiece of £[([—9-27,9-2"] N Z) to w[(I + [_7Z), this implies the left hand
side of the claim (6.27). This finishes the proof of Lemma 6.21. m

Definition 6.22 We define the event

Every u € Seedpj(Input) is a left or right ladder word of £[[—2 -
eed Il =% 2",2-2". If I, # I, then every u € Seedfj;(Input) is a right .  (6.29)
ladder word of [[—2-2",2 - 2"].

Lemma 6.23 We have

Blique it N Beignais N B NnB ER . CEL (6.30)

n n N
all paths,r recogn straight stop,7 = ~seed II*

Proof of Lemma 6.23. Assume that the events on the left hand side of (6.30) hold. In order
to show that the £, holds, let wy € Seedf(Input). We need to show that ws is a ladder word
of £[[-2-2",2-2"]. Using (4.5), we take wy,ws € C" with (w1, w2, ws) € Seedf (Input); thus
wiwaws = N[(7(k)+j+[0,3cin]) for some k < 2™ and j € [0, Teynl]. Since B, - holds, we have
|S(7(k))| < 2". Using 2" +7c1nl?43c1ln < 2-2" —cynl, we see that the random walk S is located
inside the interval [—2- 2" 4 ¢ynl, 2 - 2" — ¢ynl] during the time interval 7(k) 4+ 7cinl + [0, 3cin].
The word wiwyws is read along an admissible piece of path, say R € AdPath(2-2" — ¢inl, 3¢in)
with £ o R = wjwows; (the time interval is shifted back to the origin). The event Egnly ladder
holds by Lemma 6.19, and we have (w;, w2, w3) € Puzzlef(Input); hence ws is a ladder word
of £[[—11-2",11 - 2"]; say wg = & o« for a ladder path 7 : [0,¢cin[— [—11-2",11 - 2"]. Let
7' = R[[cin, 2cin| be the middle piece of R, along which one observes (§ o7’)_, = wa = £ o .
Since the event Ef,, ..y holds by Lemma 6.5, we get 7'((3/2)cin) = m(c1in/2); thus 7 takes
least one value in [—(2-2" —¢nl), 22" — ¢ynl]; therefore all the values of 7 are in [—2-2",2-2"].
Thus ws is a ladder word of £[[—2-27,2-27].

For the rest of the proof we assume [_, # [ and let u € Seed{j;(Input). It remains to
show: w is a right ladder word of £[[—2-2",2 - 2"]. Using Definition (4.6) of Seedf};, we choose
v € Seedfj(Input) with (u[(l—Z N [0,conl_]))— = (v[(I-Z N[0, conl_]))—. From the first part
of the proof we get: u and v are ladder words of {[[—2-2™,2-2"], since u, v € Seedi(Input). We
distinguish three cases:

1. u is a right ladder word;
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2. u and v are left ladder words;
3. u is a left ladder word and v is a right ladder word.

We need to show that case 1. holds; thus we prove that the cases 2. and 3. lead to a contradiction:

In case 2., let u = ({[I)— and v = (£[J)—_ for some left ladder intervals I, J C [—2-2" 2-2"],
|I| = |J| = e1n. We get (u[(I—Z N[0, conl_]))— = (£[I")— for some [2 -spaced interval I’ C I,
|[I'| = con + 1. Similarly, (v[(I_Z N [0,canl_]))— = (£[J")— for some [._l_,-spaced interval
J'CJ, |J'| = ean+1. Thus (§[I')— = ({[J')—, which is incompatible with the event B}l ;. gs-

In case 3., let u = ({[I)— for some left ladder interval I C [-2-2",2-2"] and v = ({[J)—
for some right ladder interval J C [-2-2",2-2"], |I| = |J| = cin. We get again (u[(l—Z N
[0, conl_]))— = (£[1")— for some I2 -spaced interval I’ C I, |I'| = con + 1. This time we have
(W[(I-ZN][0,conl]))— = (£[J") for some % -spaced interval J' C J, |J'| = con + 1. Since
12 #12,, we have I' # J'. We obtain (¢[1')— = (£[J')—, which is incompatible with the event

unique fit*

Toilus cases 2. and 3. cannot occur. Summarizing, we have proven that the event EZ,_;; holds.

[

Definition 6.24 Ifl_, =1, we define the event

Bl = (6:31)
For all ladder intervals I,J C [=9-2",9-2"], |I| = |J| = cin: if at least one

{of_((éup,(pr (€11~ (€[N ). ((ET1) (€[T) ), or ((€[T), (7)) is in}
Neighbors™ (Input) then dlstanc (I,J)<3- lcln

In the case I, #1_, we set EY to be the sure event.

Lemma 6.25 B" nE™

51gnals stop,7 =

C Ej dist

Proof of Lemma 6.25. Assume that the event Bg, .. N E, - holds, and that [, =1 =1.

Let I,J C [-9-2",9-2"], |I| = |J| = cin, be right ladder intervals, and assume that there is a
(wy, w) among (€]1)—, (€17 ), ((€11)— (€TT)), (€D, (€[.1)), or (€[D)—, (¢]])._) with
(wy,w7) € Neighbors™(Input). By definition (4.7), some word wywws with w € C*~! occurs in the
observations y at most 22" time steps after a stopping time 7(k), k < 2%". Since Egop,r holds, the
random walk remains in the interval [—2-122", 2-122"] during that time interval; say the random
walk follows an admissible piece of path R : [0,2c1n+h — 1[— [-2-122" 2.12?"] while producing
the observations £ o R = wjwws; (we shifted the time domain back to the origin). R consists of
the three pieces 7] = R[[0,cin], 7 = R[(cin + [0,h — 1]), and 75 = R[(cin + h — 1 + [0, c1n])
with o] = w1, (on’), = w, and ({onh)_ = wy. Let 21 := c1n/2 and z9 := (3/2)cin+h—1
be the points in the middle of the domain of 7] and 7}, respectively. Then

|71 (z1) — 7h(x2)| < (c1n + h — 1)1, (6.32)

since the path R cannot travel faster than [ per step. The event ESlgnals 11 holds by Lemma 6.5.
Let 71 : [0,cin[— I and my : exn + h — 1 4+ [0,cin[— J be ladder paths with range I and J,
respectively; we choose these paths to be left or right ladder paths according to whether the
reading direction is “—” or “—”. Hence, using {om = w1 = {on} and (§oms)_, = we = ({om))_,
we obtain 7 (x1) = m1(x1) and 75 (x2) = ma(x2). Consequently (6.32) implies

distance(I, J) < |mi(x1) — m2(z2)| < 3-lein. (6.33)
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Summarizing, we have shown that the event E7; holds. m

The following event EJ, ;. compares modulo classes (modulo some 7) in “reconstructed”
pieces w with modulo classes in the “true” scenery £. Roughly speaking, it states that all
modulo classes are reconstructed correctly, and either all of them are reconstructed in the correct
orientation (“case A”), or all of them are reversed (“case B”). Even more, reversion is only
allowed for symmetric maximal jumps of the random walk. Our goal is to show that this event
holds for v =1 (at least if the basic events B hold), but as intermediate steps, other values of

~ are relevant, too.

Definition 6.26 For all divisors v > 1 of I_,, we define the event

EITILlod’yok = (634)
For all w € SolutionPieces™(Input) there is a bijection ¢y : Z/yZ — 7Z/vZ such
that (at least) one of the following two cases holds:
A) VZ € ZvL: &[([-2",2"] Ny (2)) Ew[Z EE[([-9-2",9- 2] N1y (2))
B) I, =I_ and
VZ e Z/vL: &([-2",2"] N1y (2)) E (w[Z)7 EE[([=9-2",9-2"]N1,(2))
Lemma 6.27 For 7= l—” we have EsneedII N ErTrllodclass N E(rilist N Bgniqueﬁt - ErrrLlodlﬁ ok”
Proof of Lemma 6.27. Assume that the event E7 11NV ET 4 ass N Eige N Blique it holds.

Let w € SolutionPieces"(Input). Let Z € Z/I_,Z. In order to define «(Z) = 1;_ (Z), we proceed
as follows: Since w € Filtery(Input), there exists a right ladder interval I C Z N [—2-2",2.2"]
such that (w[I)_, € Seedfj;(7,m). We choose such an I. Then (w[I)_, is a left or right ladder
word of {[[—2-2",2-2"], since the event EZ _,; holds. More specifically: for some right ladder
interval J C [-2-2",2-2"], at least one of the following two cases holds true:

Case A(Z): wl[I=¢[J,
Case B(Z): 1. =Il_ and (w[])” =& J.

We define «(Z) := J +1_7Z € Z/I_Z. Since the event E”, holds, we get

mod class

for Case A(Z):  &[([-2™,2"]|Nu(Z)) Cw[Z Z&[([-9-2,9 2" Nw(2)),
for Case B(Z): £[([-2™,2"]Nu(Z)) C (w[Z)” CE[([-9-2™,9 2" Nu(2)).

We claim that one of the following two cases occurs:

Case A: For all modulo classes Z € Z/I_,Z holds Case A(Z);
Case B:  For all modulo classes Z € Z/I_Z holds Case B(Z).

This is obvious for [, # [, since then Case B(Z) cannot occur. To prove the claim for [, = 1.,
we proceed as follows: For Z € Z/IZ, let Tz : Z — Z denote a translation (Case A(Z)) or
reflection (Case B(Z)) which transports w[Z to a subpiece of £[[—9-2",9-2"|N¢(Z). Let Z,W €
ZJ1Z. We choose two right ladder intervals I; C ZN[4-2",5-2"], [, CWN[4-2"5-2"], |[;| =
|Is| = e1n, with I >, I2; such intervals exist, since supp u*h meets every modulo class (modulo
[) and since n > ny is large enough. We abbreviate I := Tz[I1] and I} := Tyy[l2]. Since w €
Filtera(Input) one has ((w[I1)—, (w[I2)—) € Neighbors™(Input). Let Xz denote the symbol “—"
in the Case A(Z) and “~” in the Case B(Z). Then ((w[I1)—, (w[l2)=) = ((§[11)x,, (€[15) xy )-
Since the event EY. , holds, this implies distance(I{, I5) < 3-lcin. However, Tz maps [—5-2", 5-2"]
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to [=9-2" —1,9-2" 4+ []; (the extra summand [ arises since Tz was specified only by its action
on a modulo class). Thus it maps I;,I> C [4-2",5-2"] to a subset of [4-2" —1,9-2" 4[] in the
Case A(Z), and to a subset of [-9-2" — [, —4 - 2" +[] in the Case B(Z). The same statement
holds with Z replaced by W. The intervals [4-2" —1,9-2" +[] and [-9-2" — [, —4-2" 4[] are
farther apart than 3 - leyn > distance(I7, I5); thus either both Tz and Ty must be translations,
or both must be reflections. Summarizing, we have shown so far that Case A holds or Case B
holds.

It only remains to show that ¢ : Z/I_,Z — Z/I_Z is bijective. Since Z/I_,Z is finite, it suffices
to show that ¢ is injective: Let Z,W € Z/I_Z with «(Z) = «(W). Using the above maps T,
Tw again, we know

T;[Z N domain(w)] =Tz[ZN[-5-2"5-2"]C u(Z)N[-9-2",9-27], (

C 5)
Tw[W Ndomain(w)] =Tw[WnN[-5-2"5-2"] C (W)N[-9-2",9-2"]. (

6.3
6.36)
The sets on the right hand of (6.35) and (6.36) coincide; thus Tz[Z N[5 -2",5 - 2"]] and
Tw[WN[=5-2"5-2"]] overlap at least in K N¢(Z) for some interval K of length 2. We choose
any right ladder interval D C K Nu(Z) with |D| = ¢in and set Dy := T, '[D] and D5 := T}/ [D].
Then

Case A: (w[D1)— = (£{[D)— = (w[D2)_,
Case B:  (w[D1)— = ({[D)— = (w]D2)—;

thus w € Filters(Input) implies Dy = Dy; hence Z = Dy + 1, Z = Dy + [_,Z = W. This shows
that ¢ is indeed injective. m

The next lemma contains a “step down” procedure in order to arrange correctly larger and
larger modulo classes in a reconstructed piece of scenery w. Here is a rough idea for the rather
complex construction:

Suppose we have already correctly reconstructed large pieces of the scenery ¢ restricted to
modulo classes (mod v, say) up to a translation (and possibly a global reflection for all classes).
Our task is to identify the relative translation between different modulo classes.

We start with a “reference” ladder word; it occurs over both, a ladder interval I in the
reconstructed “candidate” scenery w, and a ladder interval J in the “true” scenery £ (possibly
reflected). Then we look for the rightmost “neighboring” ladder words that occur not in the same
modulo class as the reference word, both in the candidate scenery and in the true scenery; we
use here the “estimated” neighborship relation “Neighbors”. Taking the rightmost “neighboring”
words as our new starting point, we repeat this construction until we are sure after ~ steps to
re-enter the modulo class that we started with; say we arrive at ladder intervals I, and J,,
respectively. In this way we obtain two “chains” (I;) and (J;) of neighboring ladder intervals;
(J;) belongs to the the “true” scenery, and (I;) belongs to the “reconstructed candidate” w.

Using the Definition of the tests “Filtery/3”, and of the events Eycighpor1/ir, we know that
the “estimated” and the “geometric” neighborship relations coincide at least when taking only
rightmost neighbors as above; this holds for both, the “reconstructed” piece w and for the
“true” scenery . The distance between I, and I equals the distance between J, and J, since
this distance is not affected by a relative translation between different modulo classes; recall
that I, and I belong to the same class modulo v, and so do J, and J. Having identified the
starting point and the end point of our two chains of intervals, there also no ambiguity left
for the relative position of the intervals in between in the chain; but then we have successfully
reconstructed the larger modulo class spanned by the whole chain ().
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This construction is repeated recursively until we have correctly reconstructed the whole piece
of scenery.
We describe the procedure formally:

Lemma 6.28 Assume that the events Bﬁniqueﬁt, Egeighborp and Egeighborn hold true. Let vy > 1
be a divisor of I, and assume that the event Eglodwok is valid. Then there is a divisor v of _,

with 1 <~/ <~ such that the event Er?lody’ ok s valid, too.

Proof. Let v be as in the hypothesis of the lemma. Every modulo class Z € Z/~Z is a union of
modulo classes Z’ € Z/1_7Z. Furthermore, every such modulo class Z’ € Z/I_,7Z has a nonempty
intersection with supp p**. (One can see this as follows: Since 1 is the greatest common divisor
of the elements of supp u, every integer can be written in the form GI_, + Zszl s; with 3 € Z,
K €N, and s; € supppu for 1 < j < K. By Lemma 6.11 it suffices to take K = h; thus we get
7, = supp p** + 1,7, which is equivalent to the above claim.)

Since we assume 7y > 1, the set difference Z \ vZ contains at least one Z € Z/vZ as a subset;
thus Z \ 7Z has at least one element in common with supp u**. Let M_ := max[(Z \ vZ) N
supp 1] and M._ := —min[(Z \ vZ) N supp x*"]. Define 7’ to be the greatest common divisor
of v and M_,; thus 7/ < v since M_, ¢ ~Z.

Let w € SolutionPieces” (Input). According to Definition (6.34) of Ef, ;. . We have to distin-
guish two cases A and B; however, we treat both cases simultaneously as far as possible. We
set

¢ o= { £[[-9-2",9-2"] in case A of (6.34), (6.37)

(€[[-9-2™,9-2"]) in case B of (6.34).

For Z € Z/vZ we set i (Z) := £, (£Z) with “+” in case A and “—" in case B; here the bijection
Lyt Z/YZ — Z[/VZ is taken from Definition (6.34) of the event ET, ;. .. The introduction of Z,
takes care of the inversion of modulo classes in ¢ in case B. Since the event El’}lod7 ok 18 valid, we

have for all Z € Z/~Z:

([ (2) N [=2",2"]) Cw[Z E([iy(2). (6.38)
For Z € Z/vZ, let Ty : Z — Z denote the translation which transports w|Z to some Tz[w[Z] C
([24(2); in particular T7[Z] = iy(Z). Tz is uniquely determined, since the event By} ; .5, holds.

Of course, T also depends on v, but we suppress this in the notation, since ~ is considered
fixed for the moment. For W € Z/~Z, we set Ty := (TZJI(W))il; thus Ty [W] = ;1 (W). For
later use, we note

([ (Z2) n[=2",2"]) € Tz[w[Z] € ¢[i4(Z). (6.39)
We define
(= |J Tzlw[z]CC (6.40)
AN/

Note that [-2",2"] C (ilomain(g’ ). For (nonempty) ladder intervals I and J, we abbreviate
T[ = T[JF,YZ and TJ = TJ+»YZ.

Let the following data be given: u € {w, ('}, a right ladder interval I contained in the domain
of u with |I| = ¢1n, and k € [0,7]. We define Seq(I,u, k) to denote the set of all (Io,...,Ix)
with the following properties:

1. Iy = 1;

2. Iy,..., I are right ladder intervals contained in the domain of u with |I;| = ¢in, 0 < j < k.
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3. For all ] I~ [0,]{?[ Ij =+ ’}/Z 7§ Ij+1 —+ ')/Z
4. For all j € [0,k[: ((u]1j)—, (u[lj+1)—) € Neighbors™(Input).

Of course Seq(, u, k) also depends on =, Input, and n, but these parameters are considered fixed
for the moment.

Let MaxSeq(I, u, k) denote the set of all (1;);j—o,..x € Seq(/,u, k) for which min I}, — min I
is maximal.

Given a modulo class Z € Z/vZ, we take a fixed right ladder interval J C Z;l(Z) N[0, (cin+
1)i-] € i;1(Z) N domain(¢’), |J| = e1n. Furthermore, we set I := T7J € Z N domain(w).

J serves as a “reference” interval in the “true” (only possibly reflected) piece of scenery (’,
while I serves as a “reference” interval in the “reconstructed” piece of scenery w.

We prove by induction over k:

e MaxSeq(/,w, k) contains a unique element (/;);—o,... x, namely

e MaxSeq(J, (', k) contains a unique element (J;);—o, .., too, namely
Jj = Mj+ (ein—1)l_j + J, (6.42)
where M = M_, in case A and M = M, in case B.

This is obvious for £k = 0. Here is the induction step k — 1 +— k:
If (I;)j=0,... k> (Jj)j=o0,.. % are given by (6.41) and (6.42), then

(Ij)j:O,...,k c Seq(I,w, k‘) and (Jj)jzow,’k € Seq(J, C’, ]f) (6.43)
To see this, we check the conditions 1.—4. in the definition of Seq:
1. This is obvious.

2. The only nontrivial claims are J; C domain(¢’) and I; € domain(w), 0 < j < k. To prove
the first claim, we observe | minJ — min Jil < (M + cinl)k < 2einly < 2¢1nl?; thus we
obtain for all i € J;: |i| < 2c1ni?+(cin+1)l— < 2"; hence J; C [—2",2"] C domain(¢’). To
prove the second claim, we observe that J+[—2"/2,2" /2] C [—2",2"] = domain(¢’) (recall
n > ng, and ng is large enough). We apply the translation T to J 4 ([—2"/2,2"/2]NyZ) to
obtain I+ ([—2"/2,2"/2]NyZ) = Ty[J+([-2"/2,2"/2]"¥Z)] C domain(w) = [—5-2",5-2"].
This implies I + [-2"/2+~,2"/2 —~] C [-5-2",5-2"], since [—5-2",5-2"] is an interval,
consequently I; C I +[-2"/2+~,2"/2 —~] C domain(w), which proves the second claim.

3. This is a consequence of min [;41 —max ; = M_, ¢ yZ and min Jj;1 —max J; = M ¢ +Z.

4. Because of min/; 11 —max/I; = M_, € supp p*" we get I; >y, Ijy1; thus the fact w €
Filtery (Input) implies ((w[I;)—, (w[lj+1)—) € Neighbors™(Input); see Definition 4.4. Sim-
ilarly min J;41 — maxJ; = M_, € supp #*" in case A and min Jjy1 —maxJ; = M_ €
—supp p*" in case B. Hence we get Jj>p Jjy1 in case A and —J; <, —Jj41 in case B; this
implies ((¢'[Jj)—, (¢'[Jj+1)—) € Neighbors™(Input) in both cases, since the event EJ.; 1.,
holds; see Definition 6.9.
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Thus the conditions 1.—4. are indeed valid.
To check the defining property of MaxSeq, consider another sequence

(I;)j=o0,..k € Seq(I,w,k) and (J})j=o,.x € Seq(J, (', k). (6.44)

Using our induction hypotheses

MaxSeq(I,w,k —1) = {(I})j=0,..k1}, (6.45)
MaxSeq(J, ¢,k —1) = {(Jj)j=0,..k—1} (6.46)
and
( ;’)jzo,...,k—l S Seq(Ia w, k — 1)7 (‘]],')j:07...,k—1 € Seq(J7 C,’ k— 1)7 (647)
we know
minIy_; —minly > min/j,_; — min I}, (6.48)
minJx_1; —minJy > minJ,_; — min J}, (6.49)

With equality only if (I})jzgj_._,k_l = (Ij)jzo,...,k—l or (Jj/‘)j:(),...7k—1 = (Jj)jzo,...,k—l-
We treat first case of the I’s: Using ((w[I}_,)—,(w[I},)—) € Neighbors™(Input) and w €
Filtery (Input) we get I, >, I;, + al_, for some a € N; thus

min I}, — max [}, ; < min I}, +al_, —maxIj_; < M_, (6.50)

by the maximality of M_, and I + ~Z # I;_1 + vZ; (see condition 3. in the definition of Seq,
and recall I_, € vZ). Hence

min I, —min [, = (minl}, —maxI;_;)+ (c;n — 1)l + (minI;_; — min I}) (6.51)
< M_ + (aan — 1)l + (min Ix—; — min Ip) = min [, — min .
This proves
(Ij)j=o0,...k € MaxSeq(I,w, k). (6.52)

Furthermore, using our induction hypothesis, equality in (6.51) can hold only if (1 ]’) =0, k—1 €

MaxSeq(/, w, k—1) and min I; —max I; | = M_,, which is equivalent to (1});=o,...k = (Ij)j=0,.. k-

We treat (J;)j=o,..k similarly: Since the event Ej, .11 holds, ((('[J;_;)—, (('[J)—-) €
Neighbors™ (Input) implies

Ji_ibn Ji+al_,  in case A, (6.53)

~Ji_1 <9 —Jj, —al_  incase B (6.54)

for some a € N; see Definition (6.12). This implies in both cases A and B, analogously to (6.50):
min J;, — maxJ;_; <minJj, +al_, —maxJ;_; <M (6.55)

by the maximality of M; recall that M = M_, in case A and M = M. in case B, and that
I, =1l_ € ~Z holds in case B; furthermore recall that Jlg and J,’gf1 belong to different classes
modulo v. We repeat arguments similar to (6.51):

minJ;, —minJ), = (minJ, —maxJ;,_;)+ (cin — 1)l + (min J;,_; — minJj) (6.56)
< M+ (ein — 1)l + (min Jg_1 — min Jy) = min J; — min Jy,
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with equality only if (J});—o,. x € MaxSeq(J, (', k—1) and min J;, —max J;,_; = M. This proves
in analogy to (6.52):
MaxSeq(J, (', k) = {(J;)j=o0...k}- (6.57)
Since i, is bijective, the facts 77, I; C domain(¢’), (¢'[T1;1;)— = (w[I;)—, and (I}); € Seq(l,w, k)
imply
(T7,1;); € Seq(J, ¢, k). (6.58)

Similarly, TJ J; € domain(w), (w (TJ Ji)— = (¢'[Jj)=, and (J;); € Seq(J, ', k) imply
(TJ i) € Seq({,w, k). (6.59)

Now we set k = v. Observe that I, +vZ = Iy +vZ and J, + vZ = Jo + vZ; hence Ty, = Ty,
and TJO = TJ,Y. Thus, using (6.52), (6.57), (6.58), (6.59), and the defining property of MaxSeq,
we obtain

min [, — min Iy min 77 I, — min Ty, Io (6.60)

< minJy —minJy
= min TJ7 Jy — min TJO Jo
< min/, — min Iy.

Since the first and last term in (6.60) are identical, equality holds everywhere in (6.60). Hence,
using (6.57), (6.58), and the defining property of MaxSeq again, we see

(T1,1;); € MaxSeq(J,¢',7) (6.61)

and thus (77,1;); = (J;j);, since MaxSeq(J,¢’,v) is a singleton. Furthermore the facts (6.41),
(6.42), v # 0, and Ty, = Ty, imply M_, = M, since

0 = (min I, — min Iy) — (min J, — min Jo) = M_,v — M~. (6.62)

A side remark: consequently case B cannot occur whenever M_, # M. . Using (6.41) and (6.42)
again, we see that all translations Ty, j = 0,...,~, coincide: 17, =T7. We observe

(IU...UL)+7Z =T+ {jM_|j=0,....9} +7Z =T +~'Z; (6.63)

recall that 7/ was defined to be the greatest common divisor of M_, and . Thus we have shown:
the translations Tz, Z € Z/~Z, depend only on the rougher modulo class Z' = Z++'7Z € 7/+'Z;
hence Tz 1= Tz and vy + Z)Y'Z — Z/V'Z, 13(Z") = Uzc 21 zen/yz tv(Z) are well-defined.
Since ¢y : Z/yZ — Z/vZ is a bijection, ¢, is a bijection, too. In analogy to 7y, we introduce
iy (Z') =1y (£Z"), (“4” in case A, “=” in case B). As a consequence of (6.39), we obtain for
all Z' € Z/~'Z:

(T (Z) 0 [=27,27) € T [w[ Z) € C[iy(2). (6.64)

Hence the event E” | ok 18 valid. This finishes the proof of Lemma 6.28. =
Lemma 6.29 Emodl ok N Bumque fit N Ene1ghborl N Ene1ghbor 11 - Er?lodlok'

Proof. Assume that E" od . ok N Bunlqueﬁt NnE™ neighbor I N EnelghborH holds. Let I'" denote the

(random) set of all divisors v > 1 of [, for which the event E7, ;. is valid. I' # 0, since
El a1 ok holds. The smallest element of I' cannot be bigger than 1 by Lemma 6.28; thus it
must be equal to 1. This means that E ;. holds. =
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Lemma 6.30 For v =1, we have E}} ;. € E}

all pieces ok

Proof. This is obvious, since there is only the trivial “modulo class” Z = ¢1(Z) = Z remaining
for v = 1: In case A, one has £[[—2",2"] C w C £[[-9-2",9-2"], and in case B, one has
E[-2m2" Cw” EE[[-9-2",9-2"]. =

N B% NnEY

51gna1s stop,7 =

Theorem 6.31 B"edIﬁB N B~» N B" N B"

En

all pieces ok

Proof. We collect the results of Lemmas 6.5, 6.10, 6.12, 6.19, 6.21, 6.23, 6.25, 6.27, 6.29,
and 6.30 in the following list:

unique fit all paths,r outside out recogn straight

n n
Bs1gnals < signals 11>
n
Ball paths,T c Eneighbor D
n m n
Esignals II N EStOp,T c Eneighbor 1
n n n
Ball paths,T N Brecogn straight < Eonly ladder>
n n
B outside out nB, unique fit N Eg; only ladder N Eg. stop,T - mod class’
n n
Bumque fit N Bs1gnals n Ball paths, n Brecogn straight N Estop T - Eseed I
B" N E™ c E™
51gnals stop,T = dist>
Eseed 11 N Emod class N Edlst n Bunlque fit < Emod [ ok’
n
Emodl ok N Bunlque fit N Enelghborl N Enelghbor II < Emod 1ok>
n n
E mod 1 ok - all pieces ok "

The claim of the theorem is a simple combination of these inclusions. =

6.3 Probabilistic estimates for basic events

In this subsection we show that the “basic events” B occur very probably. Together with the
result of the previous subsections this shows that the partial reconstruction algorithms Alg™
yield with high probability a correctly reconstructed piece of scenery.

We start with an elementary auxiliary lemma:

Lemma 6.32 Let f : Iy — J be a finite injection without fized points. Then there is I' C I
with |I'| > |Ip|/3 and f[I''N T = 0.

Proof. We construct recursively finite sequences (Ii) and (1), for k —1 < |Iy|/3, of subsets

of In. The “loop invariants” of the recursion are: f[Ix] NI, =0, f[[ NI, =0, fI[[]NI], =
Ik N I,/C = @, ‘I,;‘ = k, and |Ik| > |Io‘ — 3k.

The recursion starts with the given Iy and with I} = . In the (k + 1)st step, k < [Io|/3,
we choose any point € I, and define I} | := I U{z}. If f~!(x) exists, then we set Ij;q :=
I\ {z, f(z), f~1(x)}; else we set I}41 := I \ {z, f(z)}.

Note that the validity of the above “loop invariants” is indeed preserved by the recursion;
the fact f(x) # x is used for the third loop invariant.

Finally we set I’ := I} for k := min{j € N | 3j > |Iy|}; then I’ C Ij is well-defined and fulfills
the claims in Lemma 6.32. m

Lemma 6.33 There exists constants cis,c19 > 0 not depending on n such that for all finite
J C N one has

unique fit

P | (Bliguess())°] < crse™™ (6.65)
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Proof. Let i,j € {1,...,12}, and let I C [—=11-2",11-2"]\ J be a i-spaced interval, and
J C [=11-2"11-2"]\ J be a j-spaced interval with [I| = [J| > 1. Let f : I — J be a
monotonically increasing or decreasing bijection, but not the identity map; thus the case I = J
can only occur if f is decreasing.

We claim: For some constants ¢1o > 0 and ¢33 > 2log2/cy (not depending on i, j, I, or J)

we have
Pl o f = £[I] < crpe el (6.66)

Note that { o f = [ is equivalent to (§[J)— = (§[I)— if f is increasing, and it is equivalent to
(&[J)— = (&]1)— if f is decreasing.

Before proving (6.66), let us show how it implies (6.65): There are at most [ choices for (i, 7),
and given (7, 7), there are at most (222" +1)? < 500-22" choices for (I,.J) with |I| = |J| = can;
finally there is one binary choice: f is increasing or decreasing. If { o f # £[I holds for all of

these choices (with the trivial exception I = J and f = id), then the event Bj; .5 is valid;
note that it suffices to consider |I| = |J| = can instead of |I| = |J| > con, since it suffices to

consider subintervals of I, J consisting only of con points. Hence (6.66) implies (6.65):
P [(Bliquent)S] < 172+500- 2% 2 cipe™ 13" = ¢1ge” 19", (6.67)

where ¢1g := 10000%¢12 and c¢1g := c13¢2 — 2log2 > 0.

We prove (6.66) next: unless f is the identity map, it can have at most a single fixed point,
since it is the restriction of some affine-linear map to the ladder interval 1. Remove this fixed
point from I, if it exists; call Iy the set of all remaining points. By Lemma 6.32, there is I’ C I
with |I'| > |Ip|/3 > (|I|—1)/3 and f[I'|NI" = (). Hence &[ f[I'] and £[I” are independent random
pieces of scenery; thus

Pleof=¢[I] < Pleo f[I'=¢€[I'] = |c|" ' < |c|-I=D/3, (6.68)

thus (6.66) follows with c13 := (log|C|)/3 and ¢12 := |C|*/3. Note that ¢3¢ — 2log2 > 0 since
co was required to be large enough; recall Subsection 2.1. =

Lemma 6.34 Let P’ be a probability distribution on Q2 such that S has the same distribution
with respect to both measures P and P’, and let T be a sequence of G-adapted stopping times.
Then there exist constants cag, c21 > 0 not depending on n such that:

P, [(B;Lllpaths,f)c N Eg;

stop,T

| < cqremeom, (6.69)

We use this lemma twice below: Once for P/ = P in this section, and in Section 8 for P’ = P,
which was defined in (3.5). Note that the following proof does not need any assumptions on the
distribution of the scenery &; knowing the distribution of the random walk S suffices.

Proof of Lemma 6.34. Let k£ < 2*" and R € AdPath(12-2",3cin). We set

Bib = {Hj € [0,22" — 3¢yn] = TimeShift™ ¥+ (R) C S}, (6.70)
m — Tk(X) < 212anm’ ‘S(Tk(X))’ S 2nm’ (6 71)
stop,7k Ti(x)+2- 22mm < 7y (y) forj < k ’ )

ARF = B\ BE (6.72)
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n _ 29" —1 pnk m m an
Note that Ballpaths,T - ﬂRGAdPath(12-2”,3c1n) Uk:O BR and EstOp,T < Estop,T,k: for k <2 ’ and

thus
gan_1

n,k
Esﬁ?op,’r \ Bgllpaths,r c U ﬂ AR : (673)
ReAdPath(12-27,3¢in) k=0

In the following, R runs over the set AdPath(12 - 2", 3¢cin):

20m 1
P’ [(Bjiipas ) N Effopz] < |AdPath(12 2", 3e1n)| max P’ M Ax"|. (6.74)
k=0
|AdPath(12 - 2" 3¢in)| < 25-27| M|, (6.75)
20m—1 T 20m—1 4
PN A = T P AR N AV (6.76)
k=0 i k=0 i<k
PAF N AW | < P BRN B0 (A |5 (6.77)
j<k ] j<k

the last statement follows from the elementary fact P'[ANB|C] < P'[A|BNC]. We have Cz’k =

E:*;op,r,k N ﬂj <k A%’j € F;,, i.e. one can decide whether the event C}%’k holds by observing £ and

S(0),...,S(r). Furthermore, if Cg’k holds, then |S(7%(x))| < 2", and as a consequence of the
local Central Limit Theorem [5], Theorem 5.2 (page 132) we get: there is a constant caa > 0 such
that for all =,y with |z| < 12-2" and |y| < 2": Ply + S(j) = « for some j € [0,2%" — 3cin]] >
€222 "; note that y + 5 is a random walk starting in the point ¥, and recall that n = n,, > ng;
thus 22" — 3c¢in > 22"/2 holds by our choice of ng in Subsection 2.1. Also, the random walk
need not be aperiodic; it suffices that it can reach every integer, i.e. that the greatest common
divisor of the elements of |[M] is 1. Thus by the strong Markov property:

L nt P [S(r(k) 4 ) = for some j € [0,2°" — 3ern] ‘ Cg”“} > 327" (6.78)
Once it is in the starting point x, the probability that S follows an admissible path R €
AdPath(12 - 2" 3cin) for the next 3cin — 1 steps is bounded from below by M?Ifilrln' Here
fmin = min{u({z}) |z € M} is the smallest positive probability for a jump. Therefore, us-
ing the strong Markov property again:

P | Byt ‘cg’“} > 2 TS, (6.79)
We combine (6.74)—(6.77) and (6.79) to obtain
P'[Efp: \ Bilipathsr] < 25 2" [MPO"(1 = eon2 " i)™ (6.80)
< 252"\ MPexp {—0222_"uifilnn2a”}

< 25exp {n(log 2+ 3¢ log | M) — cogen(@ 108 2+3e1 log pimin—log 2)} :

Now a > 1 — 3¢y logy fimin by our choice of v in Subsection 2.1; thus the right hand side of the
last inequality converges to 0 superexponentially fast as n — oco. Note that we may choose an
upper bound cg1e70" for the right hand side in (6.80), where neither co; nor cgg depend on «
or c;. This is true since n > ng, and ng was chosen large enough, depending on ¢; and «; recall
Subsection 2.1. This proves the lemma. =
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Lemma 6.35 There exists a constant cag > 0 not depending on n such that:
P[( gutsideout)c] S 16067023”. (681)

Proof of Lemma 6.35. The set [—2-122",2-122"]\ [-10-2",10-2"] contains less than 4-[-22"
points, and for every fixed starting point the number of admissible paths with ¢1n/2 points is
equal to | M|"/2=1 Hence there are less than 4-122"*| M|“™/2 paths R € AdPaths(2-12%", ¢;n/2)
with R(i) ¢ [—10-2",10 - 2"] for all ¢ = 0,...,cin/2. On the other hand, there are less
than 40 - 2" ladder words of length ¢jn/2 in [-9 - 2",9 - 2"]. The colors £ o R that a path
in R € AdPaths(2%",c¢in/2) with R(i) ¢ [-10-2",10-2"] for all i = 0,...,c;n/2 — 1 reads
are independent of the colors inside [—9 - 2" 9 - 2"]. Thus the probability that a given path
R € AdPaths(2%", ¢in/2) with R(i) ¢ [~10-2",10-2"] for all i = 0, ..., c1n/2 — 1 reads the same
colors as a fixed ladder word in [=9-2",9 -2"] is |C|~“"/2. Thus

P [(Blutsideout)] < 16002°" | M|7/2|C| =1/, (6.82)
Since | M| < |C|, the last expression becomes exponentially decreasing in n since ¢; > 6/ log ||C||
since c; was chosen large enough; see Subsection 2.1. This proves the lemma. =

We prepare the treatment of the event Brecognstralght( J ) by the following combinatoric lemma:

Lemma 6.36 Let coy = 1/(2IM|(I— + 1—)). There are two intervals I1,Iy C [0,cin]| with
|I1| = |I2| > caacin—1 such that the following statement is valid: For all R € AdPaths(11-2", ¢in)
with R(cin — 1) — R(0) ¢ {(cin — 1)I_,, —(cin — 1)I_}, there is I € {I1,I2} and an admissible
path R € AdPaths(12 - 2", cin) with the following properties:

e R(0) = R(0), R(cin—1)= R(cin —1).
o At least one of the following holds:

1. for all (i,7) € I x I with j <i: R(i) ¢ {R(j), R()};
2. for all (i,5) € I x I withi < j: R(i) ¢ {R(j), R(j)}.
1

Proof. We define k := |coscin], I' := [1,2k] C [0, c1in],
observe |I1], |Is| > cagcin — 1 and I, Iz C [0, c1n|.

Let R € AdPaths(11 - 2", ¢1n) be not a ladder path. We show first: There are R',R" €
AdPaths(12 - 2" ¢yn) such that R'(0) = R”(0) = R(0), R'(cin — 1) = R"(ein — 1) = R(cin — 1),
R'[T" and R"[I' are ladder paths, and R"[I' = r + R'[I' for some r # 0, i.e. R"[I’ is obtained
from R'[I' by a spatial translation.

To prove this claim, let d = (d;)i=1.. c;n—1 € M"Y d; == R(i) — R(i — 1), be the jump
sizes in R. Every other d € M“" ! with Y"1 q; = Zf”{ d; gives rise to an admissible
path R € AdPaths(12-2", ¢1n), too, with R(0) = R(0), R(cln— 1) = R(cin — 1), and with jump
sizes d; = R(i) — R(i — 1); namely R(i) := R(0) + Zj L d;. Since R has its starting point and
end point in [—11-2" 11 - 2"] and since ¢;nl < 27, the path R can indeed not leave the range
[—12-27,12-27).

There are at most | M| possible values for d;, but there are c¢in possible indices i; thus at
least one value a € M occurs in the d; at least ¢yn/| M| times. We choose 2k(a+1._) > 0 indices
i with d; = a and replace them by [_,, and we choose 2k(l_, — a) > 0 different indices i with
d; = a and replace them by —I._; note that 2k(a + 1) 4+ 2k(l— —a) = 2k(I_, + 1) < cin/|M|.

= [1,k], and I := [k + 1,2k]. We
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We end up with a new vector d € M"~ 1 with S d; = 241 g, since 2k(I— +1_)a =
2k(a+1_)l_ 4 2k(l_, — a)(—I_). d contains at least 2k entries with value [_., or it contains at
least 2k entries with value —[._, since already the described replacement procedure has produced
sufficiently many such entries. However, not all entries of d can equal [_,; similarly not all its
entries can equal —I_, since R is not a ladder path. We permute the entries of d; in two
different ways; the resulting vectors are called d’ and d”’: First to obtain d’, permute the entries
in d such that the first 2k permuted entries df, i = 1,...,2k either all equal I_, or all equal
—l._; the order of the remaining entries is irrelevant. Second to obtain d”, transpose the first
entry dj with a different entry d; # dj. Let R’ and R” be admissible pieces of paths with
R'(0) = R"(0) = R(0) and step sizes d; = R'(i) — R'(i — 1) and d} = R"(i) — R"(i — 1),
respectively. Recall I’ = [1,2k|; then R'[I" and R"[I’ are ladder paths, and R"[I’ is obtained
from translating R'[I’ by r := d{ — d} # 0. Thus our first claim holds.

R'[I' is a right ladder path or a left ladder path. Without loss of generality, we assume
that it is a right ladder path; the case of left ladder paths can be treated similarly by reversing
directions in the arguments below. Furthermore, we assume without loss of generality r > 0;
otherwise we exchange R’ with R”.

We are ready to prove the claim of the lemma; recall that k is a point in the middle of I’.
There are two cases:

e If R(k) > R/(k), then we take I := I and R := R'. Since R'[I is a right ladder path, it
moves with maximal speed [_, to the right. R cannot move faster than that to the right;
thus R(j) > R'(i) and R'(j) > R/(¢) for all 4,5 € I with ¢ < j.

o If R(k) < R/(k), then R(k) < r + R'(k) = R"(k); this time we take [ := Iy and R := R".
The same argument as above yields R(j) < R”(i) and R"(j) < R"(i) for all i,j € I with
j<i

This proves Lemma 6.36. =

Lemm~a 6.37 There exist positive constants cos and cog not depending on n such that for all
finite J C N one has
P [( n (J))°] < casec2om, (6.83)

recogn straight

Proof of Lemma 6.37. Let AdPaths] denote the set of all R € AdPaths(11 - 2", ¢;n) with
R(cin) — R(0) ¢ {(cain — 1)l—,—(can — 1)I—}. (Roughly speaking, AdPaths]’ consists of “non-
straight” paths.) Given R € AdPaths,’, we take I = I(R) C [0, cin] and R € AdPaths(12-2", ¢1n)
as in Lemma 6.36. Without loss of generality assume that condition 1. in Lemma 6.36 is satisfied.
We prove for all I’ C I by induction on |I’[:

Pl(¢oR)[I' = (o R)[T] = |c| 1", (6.84)

This is obvious for I’ = (). For other I’, let I"” := I’ \ max I’. Then ¢£(R(maxI")) is independent
of (£o R[T",& 0 R[I"), since they are generated by disjoint parts of the scenery. Thus

Pl(EoR)[I' = (€0 R)[I'] = Pl¢(R(maxI')) = &(R(maxI"))] - Pl(€oR)[I" = (o R)[I"]
cl e = je . (6.85)

By taking I’ = I, we conclude P[(¢ o R)[I = (€0 R)[I] < |C|~MI.
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It does not suffice to multiply the last bound with the bound 23 - 2| M|“™ > |AdPaths(11 -
2" ¢yn)|: the product may sometimes be bigger than 1.

To overcome this difficulty, we partition AdPaths 5 R into equivalence classes [R]: we put
two paths into the same class if and only if they are mapped to the same value by the map
R — (R(0),R(cin — 1),I(R),R[I(R)); here I(R) € {I1,I2} is taken from Lemma 6.36. We
bound the number of equivalence classes from above: For our purposes, a simple but rough
bound suffices: There are at most 25 - 2" choices for each of R(0), R(cin — 1), and R(min I(R)),
and there is a binary choice I(R) € {I1,I2}; finally given R(minI(R)), there are not more
than |[M|* choices for R[I(R), where again k = [coscin] = |I(R)|. Altogether the number
of equivalence classes is bounded by 02723"]./\/l|k , where co7 := 2-25%. We may choose a map
AdPaths)’ — AdPaths(12-2" ¢in), R — R such that R depends only of the equivalence class [R]
and fulfills the claim in Lemma 6.36.

We observe

(B" (J) C (B™ )¢ C {3R € AdPaths)’ : £o R[I(R) =¢o R[I(R)}; (6.86)

recogn straight recogn straight

recall the definition (6.21) of the event B (J). Thus we get

recogn straight

P[(B" (J))°] < P[3R € AdPaths} : ¢ o R[I(R) = ¢ o R[I(R)] (6.87)

recogn straight

<Y " Pl¢oR[I(R) = ¢o R[I(R)]
IR)

< 2 (IMI/IC))" < exr(IC]/IM]) exp{(3log 2 — easer log([C|/| M)}

We emphasize: the sum in the last but one expression runs over equivalence classes [R], not over
paths R; the event {£ o R[I(R) = £ o R[I(R)} does not depend on the choice of R € [R]. We
have ca4c log(|C|/|M]) — 3log2 > 1; recall from Subsection 2.1 that ¢; is large enough. The
estimate (6.87) proves the lemma with cog = 1, co5 = co7|C|/|M|. =

Lemma 6.38 There exist constants cog > 0, cag9 > 0 such that:

P [(Blnats)] < coge™ ™. (6.88)

signals

Proof of Lemma 6.38. We show that

P[ ggrr] > 1 — czpe” " (689)
for some constants c3g > 0 and cog > 0. The proof for ngrl, nglr, and ngu can be done

analogously. Take a right ladder path 7 € [—2 1227 2 .122"][0:c17/2] and an admissible piece of
path 7/ € AdPath(2 - 122", ¢;n/2) with 7(0) > 7/(0). We show by induction over j € [0, c1n/2]
with the abbreviation I = [0,j + 1[ and I’ = [0, j[:

Pleon[I'=¢on[I'] = |C7. (6.90)

Indeed, (6.90) is trivial for j = 0. For the step j — j+ 1, we observe that m(j) is right of all 7(%)
and 7'(7), i < j, since 7 is a right ladder path and 7(0) > 7/(0). Thus £ o 7(j) is independent
of the family (£ o [I’,€ o w'[I"). Therefore, using our induction hypothesis,
Pléon[I=¢Eon'[]] (6.91)
= Pleon[l' =€on'[I] Plgon(j) = £on'(j) = Ic| 7.
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For j = ¢in/2 we obtain that
Pl o n[[0,c1n/2[= € o 7'[[0, c1n/2[] < |C|7™/2. (6.92)

There are not more than 4 - 122" +1 < 5 - 122" such 7 and not more than 5 - 122"| M|1"/2 such
7', Therefore

P[(Blig:)] < (5122 m|n/2|c|mern/ (6.93)
holds; consequently (6.89) is valid with cag = 25 - 1% and cog := 1 < ¢1 log(|C|/|M|)/2 — 41og 2.
The last inequality holds, since |[C| > | M| and ¢; was chosen large enough; see Subsection 2.1.
[

Lemma 6.39 There exist constants c31 > 0 and c32 > 0 such that:
P [(Bea1)® N Effop,r] < c2e™ ™ (6.94)

Proof. We proceed similarly to the proof of Lemma 6.34. In the following, Z runs over all
classes Z € Z/1_7Z. We set for all Z (compare with Definition (6.17) of B, 41):

gk S(r(k)+h)e Z, S[(r(k)+h+[0,3cinl_]) is a right ladder path, (6.95)
z and S[(7(k) + h + 3cinl— + [0,3cinl_]) is a left ladder path. AT
ke ke
ATZL = Estop T,k \ BZ ) (696)
where EZ%  is given by (6.71). Note that B2y =, Uy ' By" and still B, C EmL
for k < 2%"; thus
20m _1
e
stopT \ BseedI < U m An (6'97)
Z k=0
We obtain
20m | 20m _1
P[ER,\Brai] < L. max P N A% = — max H P A" () A% | .(6.98)
k=0 i<k
P A AY | < P(BYY [Efp 0 [ A% |- (6.99)
i<k i<k

Since h + 3cinl_ + 3cinl_, < 2- 22”, we have C"k = Bl n N i<k A%’j € Frx)- Using
Lemma 6.11, we know [_Z + supp u”* = Z; hence ¢33 := inf,cz Pz + S(h) € Z] > 0; (note that
the random walk x + S starts in the point x). Moreover, given that S(h) € Z, the probability
to follow a right ladder path in Z in the subsequent 3cinl_ steps is p({l_})"—, and the
probability to follow then a left ladder path in the next 3cinl_. steps is u({—1._})s"-

Thus by the strong Markov property:
P BEM | CF] = conp({i )P p({ =1 pyPom = eggemossern, (6.100)

where ¢34 := —3l_log u({l-}) — 3l log u({—1l—}). We combine (6.98), (6.99) and (6.100) to
obtain

PERyy .\ Blear] < 1-(1— cgze™ ™2™ <1 exp {—cgge 120"} (6.101)
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We have c3qc1 < alog?2, since a was chosen large enough; see Subsection 2.1. Thus the right
hand side of the last inequality converges to 0 superexponentially fast as n — co. This proves
the lemma, since n > ng and ng was chosen large enough. =

Finally we reap the results of this section:

Proof of Theorem 6.3. By Theorems 6.17 and 6.31 we have

E}?idoesit n E;lllpiecesok 2 (6102)
BseedI N Btrllnique fit N B:?Lll paths N Bouts1de out N Brecogn straight N B51gnals N Eg?op T (6103)

hence

stopT \ (EXIdOGSIt N ;Lllplecesok) - (‘Blrllniqueﬁt)C U (( ;Lllpathb) N EsTop, )

U (Boutsideout)CU (Brecognstlraight)C U ( ;gnals)c U (( sneedl) QE;?OP T) (6104)

Thus Theorem 6.3 follows from the main Lemmas 6.33, 6.34, 6.35, 6.37, 6.38, and 6.39 of this
subsection. m

7 How to find back:
Correctness of the stopping times 7

In this section, we prove Theorem 3.9.

Definition 7.1 Let T = (Ty)ren be a sequence of G-adapted stopping times. We define the
events

moerror, = {Vk > 0:if Ti(x) < 2129, then |S(Ti(x))| < 2™ }, (7.1)
Up to time 2129mm /8 S visits 0 at least
Egrlmughback = {232471: tllrrrlllees / visits ab feas } (7'2)

We abbreviate

E’;gconst,f = {5 € CZ P [ reconst, f | f] } ; (73)

recall Definition (3.15) of the event ET"

reconst, f

Lemma 7.2 For some constant css and all m > 0:

1-PpP [Egl?mughback] < egs27 . (74)

Proof of Lemma 7.2. Let (X;);>1 denote the time difference between the (i + 1)st and
the i-th visit of S at the origin. By recurrence, (X;);>1 is a.s. well defined, and by the strong
Markov property it is i.i.d. with respect to P. Since S starts in the origin, X is the first return
time to the origin, and > 7_; X; is (a.s.) the time of the j-th visit at the origin. For the sake of

this proof, we abbreviate: x = 2'2"m /8 and y = 23", Using

Y y 3
(Ethoughback) = {Z Xi > x} c (Z Xi1/3> >z (7.5)
i=1 i=1
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and the Chebyshev-Markov inequality, we obtain the claim (7.4):

1-P [Egrllough back] < P

Yy
Z:Xil/3 > xl/al < +3E
i=1

ZyIXS/‘”’] (7.6)

=1
= 2 VB [ X[°] =2 [x}7%] 2meme,

The fact £ [X 11 / 3} < oo is an immediate consequence of a lemma proved on page 382 of [24]. In

our context, this lemma states that there exists a constant csg > 0 such that P[S(k) # 0;k =
1,2,...,n] < cssn Y2 foralln > 0. m

Definition 7.3 Let v(k), k > 0, denote the (k + 1)st visit of S to the origin. We introduce a

random set 'JI"f(ﬁ, X) and an event E;”&;backrecog-'
T} (&, x) = {t € N| g[[=2"",2""] < f(0"(x)) < &[[-9- 2", 9- 2"}, (7.7)
it [ For more than 1/4 of the points k € [0, 22amm+1[ holds (7.8)
when back recog, f U(k2cmm+1) € T;c (f, X) . |

Lemma 7.4 If the event EJ,  ; holds, then T¢(x) 2 T(&,x) N [0, 212anmi1 _ 9 . gl2amm [

Proof. We know £[[—2"",2""] 5 f(x) by Ejteong ;- Let t € TH(E, x), t < 21207m+1 — 2. g120%m,
Then we also have £[[—2"m,2"m] 5 f(0"x). Hence ¢ € T¢(x); to this end recall Definition (3.12)
of the random set Tf(x). This implies the lemma. m

Lemma 7.5 Assume that the events E™*1 7, N Egrrlljulghback N E;”htrllbackrecogf and T¢(x) 2
’]I"f(g, x) N[0, 212emm+1 9. 212anm[ hold. Then Eg;lrof holds, too.
Proof. Using Eg;j]jgh back: We know

v(k2omm+1) c [07212anm+1 /8] g [07212anm+1 _ 2 . 212omm[ (79)
for all k € [0,220™m+1[. Since the event E;”}fgibackrecogj holds, we obtain |T¢(x)| > |T(&,x) N

[0, 212anm+1 9. p12anm[| > 92amm+1 /4 By Definition (3.13) of the stopping times T, this yields
Ty r(x) < 2120mme1 for all k < (220mm+1/4) /(2 - 22nm+1) = 22@=Dnmi1 /8. The event B/t

no error, T’y
holds, and 22(@~1nm+1 /8 > 90mmi1; yecall that a and n,,1 > ng are large (see Section 2.1).
Hence we obtain |S(Tyx(x))| < 2™+ for all k € [0,2°"m+1[; recall (7.1). Using Definition (3.13)
again, we see that Ty () + 2 - 22"m+1 < T, (x) is automatically fulfilled for j < k whenever
Ty x(x) < 2'20mm+1 which is the case at least for k € [0, 29"m+1[. Summarizing, we have proven
that the event E™!  holds; recall its definition (3.14). m

stop, T’y
+1 C = 22anm+1
Lemma 7.6 P [(E:Vnhenbackrecog,f) N {5 € ‘—‘Zebconst,f} :| <09 ’

Proof. We define Bernoulli random variables Yy, k > 0, by Y := 1 if v(k29"m+1) € T}(g, X),

and Yy, := 0 else. Note that v ((k + 1)297%m+1) —p(k29mm+1) > 20mm+1 > 9.212anm = Algo note that
2an,, _

Emtl {2—2anm+1 Ei:o Tly > 1/4}. Because of the strong Markov property

when back recog, f =
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of the random walk (S(k))r>0 we have that conditioned under & the variables (Yj)r>o are i.i.d.;
recall that f(x) depends at most on x[[0,2 - 212¢™m[. If furthermore £ € =™ ¢ holds, then

reconst

E[Yy | ] > 1/2. Hence we obtain for these £, using the exponential Chebyshev inequality for
2an

the binomial variable 32 ™" "1 v;:

22anm+1 1

¢ _ 1
P [(E\Zlnl’jgrllbackrecog,f) ‘ 5] =P 12 20Mm+1 Z Y, < Z f (710)
k=0

2anm 41 1/4 | ,—3/4 enmil
<E [61/4—Y1 5}2 < <$> < 0.9

2

This yields the claim of the lemma:

+1 ¢ =
P [(E:Vnhenbackrecog,f) N {g S u?gconstyf} :| (711)
+l ¢ = 220nm41
=P [(Egvlhenbackrecog,f> ’ 5 € —';reLconsmf] <0.9 .

Lemma 7.7 P [(Em+1 ) Em

1 —nm1
no error, T’y reconst,f} < 3¢ T

Proof. Let v; denote the (i + 1)st time when the random walk S visits a point of Z\[—2"m+ 4
212120mm gnm+1 _ 9[212amm] We set
gt o= {3w el s w< €[[-9-2", 92" and w 5 f(0V(x))} . (7.12)

wrong,i

If the event Ev’fr'gig ;, occurs, then our procedure might fail to estimate correctly the location of
the random walk: we might be misled to think that at time v; + 2 - 2122"m we are close to the
origin while we are not.

We claim that the following holds:

212anm+1 -1

(Em+1 )c N E™ C U Em+1 (7'13)

no error, T’y reconst,f = wrong,i"
1=0

Indeed: If (Em'H Tf)C holds, then |S(Tyx(x))| > 2"m+* for some k with T < 2120mm+1 (gee

no error,

(7.1)); thus |S(Tfx(x) — 2 2120mm)| > 2nm+1 — 9]2120mm gince S cannot travel faster than speed
[. This means Ty (x) — 2 - 2129"m = v; for some i < 212mm+1. Using Definition 3.6 of T x(x),
this implies v; € Tf(x); hence there is w € C*%"™ such that w < f(x) and w < f(0V(x)).
Assuming that the event E™ ¢ holds, too, this implies w < fx) < E[[-9-2mm, 9. 2™n]; see

reconst
(3.15). This yields that E‘Z;Jgig ; holds; recall (7.12). Summarizing, we have shown that (7.13)
holds.

For all i, f(6%(x)) depends only on x[[v;, v;+2-2129%m [ and S does not visit [—9-2"m 9.2"m]
in this time interval [v;,v; + 2 - 2120"m [ since the distance between [—9 - 27m 9 . 27m] and
Z\[—2"m+t 4 2]2120mm onm+1 _ 9[2120nm] g Jarger than 212'2°™m and since the random walk

cannot travel faster than [ steps per time unit.
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Thus by the strong Markov property and by independence of S and &, we get: x[[vs, v; +
212amm] is independent of &[[—9-2"m, 9.2"m]; therefore f(0V()) is independent of £[[—9-2"m 9.
2"m] too0.

The probability that a random word of length 2 - 2™ which has i.i.d. letters with uniform
distribution in C is equal to a word which is independent of it is equal to [C|~22"™. There are
at most 37 - 2" words of a fixed length in £[[—9 - 2" 9. 2™"] and also in f(0#V*(x)), counting
all reversed words, too. Thus there are at most 37222"» pairs of such words. It follows that

P [Em“ } < 3729%nm (|22 (7.14)

wrong,?

Hence we get the claim of the lemma, using (7.13):

212anm+1 -1
m+1 ¢ m m—+1
P [(Eno error,Tf) N Ereconst,f:| < Z P {Ewrong,z}
=0

< gl2anmen. 3729l |c| B2 < et (7.15)

W =

2nm

For the last inequality, recall that n,, > ng is large enough, and note that |C|~% is the leading
term of the last but one expression; also recall that n,+1 = 2LVl is of a much smaller order
than 2. m

Proof of Theorem 3.9. By Lemmas 7.4 and 7.5, we know Egé:gmr’Tf N ngq:;ulghback N
1 1 . .. :
E@lhtnbackrecog’f N Ereconst.f S E_::c:;,Tf' Using some Boolean algebra, this implies
+1 =
(E;?op,Tf)C N E;Zconst,f N {5 € ‘-’Zelconst,f} (716)

+1 ¢ +1 +1 ¢ =
c <E::10ugh back> U ((E;réerror,Tf)C N ;gCODSEf) U ((E:Nnhenbackrecog,f> N {’g < “;ZCOHSEJC}> :

Consequently, using Definition (7.3) of Ereconst,r and Lemmas 7.2, 7.6, and 7.7:

1
p |:(E§?;;Tf)c N E;Zconsmf N {P [E;Zconst,f | 6] > 5}:| (717)
1 ¢ 1
S P [(Eglgughback) :| + P [(Er:ré—grror,Tf)C N :';COHStyf:|

+1 ¢ e
+P [(E\Z/nhenbackrecog,f> N {f S “Zelconst,f}]

1 2an,,
< 0gp2 MMl 4 ge—nerl + 0.92 +1 < g TMm

recall that a and n,,4+1 > ng are large (see Section 2.1). This proves Theorem 3.9. m

8 Getting started: The first stopping times
In this section, we prove Theorem 3.8 and the related Lemmas 5.2 and 5.3.

8.1 Properties of the modified measure P

As a preparation of the construction of the first stopping times, we prove some properties of
the modified measure P. This measure and the closely related measure Pg were introduced in
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Definition 3.2, using an event BigBlock and events Eg(k). Recall that the event Eg(k) holds if
there is an initial piece of k 1’s in the observation x, while BigBlock holds if there is a sufficiently
large interval of 1’s in the scenery & sufficiently close to the origin.

Almost all the proofs using the measure P will not explicitly use its definition (3.5), but only
the following properties of P (and ng):

Lemma 8.1 The probability measure P fulfills:
1. € and S are independent with respect to P;
2. The common distributions of (S, €[(Z\J1)) with respect to P and with respect to P coincide.
3. With respect to P, the restriction £[Jy is independent of E[(Z\ Jy).
4. P[BigBlock] = 1.
Proof of Lemma 8.1. We abbreviate k := n2".

1. We observe first that & o ©F and the event Eg(k) are both measurable with respect to
the o-field o (&, (S(4)) <k), and S o ©F is measurable with respect to o((S(j) — S(k))j>k)-
Since o(&,(S(j))j<k) and o((S(j) — S(k))j>k) are independent with respect to P, this
implies that &€ o ©F and S o ©F are independent with respect to P[-|Eg(k)]. Hence ¢ and
S are independent with respect to the image measure Pg = (P[-|Eg(k)]) o (©¥)~!. Since
BigBlock € o (&), this implies part 1.

2. By the independence proven in 1., it suffices to show the two claims L5(S5) = Lp(S) and
LpENZ\ 1) = Lp(EN(Z\ J1)):

e With respect to P, S o ©F and S both have i.i.d. u-distributed increments and the
starting point 0; thus their distributions coincide. By the above argument, So©F and
Eg(k) are independent with respect to P. Hence the laws of So ©F with respect to P
and with respect to P[-|Eg(k)] coincide with the law Lp(S) of S with respect to P.
Hence Lp(S) = Lp[. gy ) (S © OF) = Lp,(S). Since & and S are independent with
respect to Pp, and since BigBlock € (), we obtain the first claim £5(S) = Lp(S).

e We condition on fixed values of {[[—Ik, (k] and ST[0, k]:

We know that & o ©F is a translation of ¢ by S(k) steps, which is not more than kl;
this translation maps [k, k] to a subset of J;. Thus (£ 0 ©F)[(Z \ J1) is obtained
by translating a (S(k)-dependent) subpiece of £[(Z\ [k, k]). Thus by our i.i.d. and
independence assumptions for £ and S we get: (£ 0 ©F)[(Z\ J1) has the distribution
LpE[(Z\ J1)) = v\ with respect to P[-|€[[~1k, k], S[[0,k]]. Furthermore, (£ o
OM)[(Z\ J1) and (£0O%)[J; are independent with respect to P[- |£[[~1k, k], ST[0, k]].
Since Eg(k) depends only on {[[—lk,lk] and S[[0, k], this implies

Lr(E[ZN\ 1)) = Lpp 1 pm (€0 OM[(Z N\ 1)) = v*V, (8.1)

and £[(Z \ Jp) is independent of £[.J; with respect to Pg. Since the event BigBlock
depends only on &[.Jp, this independence implies

LENZN\ 1) = Ly (EN(Z\ 1) = VPV = Lp(E[(Z )\ )); (8.2)

recall our choice of P. This proves our second claim.
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3. We have just seen: BigBlock € o(£[J1), and the random pieces £[(Z \ J1) and £[J; are
mutually independent with respect to Pg. These two facts imply part 3.

4. This is an immediate consequence of the definition P = Pg|- |BigBlock].

Definition 8.2 For k,k € N, let ZEjock(k, k) be the event of sceneries

EBlock (k, k) 1= {5 ec”

There is an integer interval Jo C [—lk,lk] with |Jo| > K such

that £[Jo = (1) e, is a constant piece of scenery with value 1. [~
(8.3)

We are mostly interested in the case k = n2?, k = ng.

Lemma 8.3 If k € 2N is large enough, k > k%, k € N, and if € is a scenery with & ¢

EBlock(k, k), then P[Eg(k)|€] < e <*/" with some constant ¢; > 0. As a consequence,
— _ 2
P [EB(k)|§ ¢ ':'Block(kﬂlq‘)] <e crk/x .

Proof. Let ¢ € C*\ Egjoek(k, ). The idea of the proof is to split the time interval [0, k]
into pieces of size k2. Let us examine at first one of these time intervals of size x?: A typical
length scale for the distance that the random walks travels in this time interval is x; in particular
the probability that it travels farther than distance k is bounded away from 0, at least if & is
large enough. If the random walk travels that far, it gets close by a point not colored with “1”,
assuming that £ ¢ Zpjock(k, k). (Note that the random walk does not leave the interval [—lk, [k]
up to the time horizon k.) But once the random walk is close enough to a point not colored
with “1”7, the probability to hit this point a few steps later is bounded away from 0, too. Thus
in every s2-sized interval the random walk has a probability bounded away from 0 to see not
only the color 1. There are roughly k/x? such intervals in [0, k]; thus the probability to see only
1’s up to the time horizon k is exponentially small in k/x2.

Formally, we proceed as follows: We define stopping times (7;) =0, |2k =1

7 :=1inf {t € ljr%, (G +1/2)K%] | €[[S(t), S(t) + 1] is not constant 1}. (8.4)

In other words, 7; is the smallest time in the interval [jx?, (j 4+ 1/2)x?] when there is a point
sufficiently close to the right of the location of the random walker which is not colored with “1”.
If no such time exists, 7; = co. We claim: For some constant cg > 0 holds

Prj < o0& ST[0,5x%] > cs. (8.5)

This means: Uniformly in £ € cZ \ ZBlock (k, k) and in the history of the random walker up to
time jx2, the chance that the random walk will get sufficiently close to a point not colored by
“1” during the next x2/2 steps is bounded from below by a positive constant.

To prove (8.5), we observe by the Markov property, A; := S((j + 1/2)x?) — S(jx?) has the
distribution *%°/2 with respect to the conditional law Pl = P[ | ¢, ST[0, jx%]; recall that &

is even. Since ,u*”Z/ 2 has the standard deviation cgk for some constant cg, the Central Limit
Theorem implies
P[A; > K] > 19 (8.6)



RECONSTRUCTING A RANDOM SCENERY 486

for large enough k. Here c¢19 denotes a fixed positive constant less than P[X > ¢4 1], and X is a
standard normal random variable. Observe that whenever ¢ € CZ\ Zpock(k, k) and A; > & hold
(i.e. in the interval of interest the random walk S moves at least the distance  to the right),
then 7; is finite (i.e. the random walk passes close to a point which is not colored with 1). This
is true since ¢ € C% \ Epjock(k, k) implies that £[[S((5 + 1/2)k2), S((j + 1/2)k?) + k] cannot be
a constant piece 1, and since the random walk does not perform jumps to the right larger than
I_,. Since the jump distribution y is not supported on a strict sublattice vZ of Z, there is a fixed
L € N such that [0,1_.] € U o supp(p*f). If the event {7; < oo} holds, then ¢ is not constant
1 on the interval [S(7;), S(7j) +1-]. Let A; denote the event that x[[jx?, (j + 1)x?] is constant
1. Then we have for some constant 1 > ¢17 > 0 and /12/2 > L:

Pl[A]] > Pj[r; <oolPi[3t € [0,L]: x(m5+€) #1] 75 < o] (8.7)
> 08]3;[36 € [O,L] : X(Tj —i—ﬁ) 7& 1 ’ T < OO] > c11.

Hence we obtain by the Markov property:

|k 2k]|—1 [k 2k]|—1

P(Eg(k)| ¢ < P ﬂ Al el =8| I PAl|el <@-cp™ (88
j=0

This proves Lemma 8.3 m

Proof of Lemma 5.2. Let 0% := Var[S(1)] be the variance of the single step distribution .
Consider the integer interval I := [—20n{", 20n{°] N Z; then

PE[T = (1)jeq] = |71 > || ~Aome’ 1, (8.9)

The first submartingale inequality states P[maxo<;<; X; > A] < E[X;]/A, for A > 0 and nonneg-
ative submartingales X;. Recall that S? is a submartingale, since = — z? is convex. Applying
the submartingale inequality yields:

P[Ejel0.ng’]: S(j)¢I]=P 0<m§x205’( 7)? > 40"nd’ | < (40°nd’) ' E[S(nd")?] = i.
(8.10)

If S(j) € I is valid for all j € [0,n3°] and if £[I = (1);es holds, then x[[0,n2°] = (1) jefo.nz01-
Thus (8.9) and (8.10) and the independence of S and £ imply

P [Ba(ng)] = Jle|tom L, (8.11)

> w

Hence we get for some constant c3 > 0, using Lemma 8.3 and the abbreviations 2§, =
CZ\ Egloek(nd’, ng) and Ep = FEp(n3):

—=C
Pl e Shal ] < TIoEE Tl < Spopimiiioent < o (5.1
B

The shift operation on’ applied to (&, S) cannot shift the scenery ¢ by more than In3° steps,
and every shift of the 1nterval [— ln ln Y] by not more than ln steps is contained in J;. Thus
the Shlfted event @’ BigBlock occurs Whenever the event & € Zpjock holds; thus (8.12) implies
P[©~""BigBlock® | Eg] < e~"", which is equivalent to the claim of Lemma 5.2. m
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Proof of Lemma 5.3. Define ' := CZ\1 x Oy and write Q = C% x Qy = Ct x CE\1 x Qy =
C’t x €. Then by definition of the measure P and by Lemma 8.1 we have P = v/t ® Py and
P=P 7, @ Poy where Pgy and P 1., respectively, are the marginal distributions of P on Q' and
C’1, respectively. Thus we have for all measurable cylinder-sets of the form F = {e1} x Ey C €,
where e; € C’t and Ey C V-

P[E] = Py, [{e1}]|Por [En] < [C[*6 10 [{e1}) Py [B»] = [C] 6"+ P[E] (8.13)

where the inequality follows because v is the uniform distribution on C, |J1| = 4In3°+1, and P 7
is bounded from above by one. Since C’! is finite, every measurable subset of € can be written
as a finite disjoint union of sets of the above form {e;1} x Ey with e; € C’' and E5 C €. This
proves the result. m

8.2 The stopping times T°

We start with the definition of a sequence T° = (T ,? ) k>0 Of G-adapted stopping times with values
in [0,212070] Roughly speaking, these times search for long blocks of 1’s in the observation Y.
Here is intuitive idea behind this construction: Since we conditioned on a large block of 1’s to
occur in the true scenery £ close to the origin, observing a long block of 1’s at a later time
indicates with high probability that the random walk has returned close to the origin. This is
true only up to a certain time horizon, since long blocks of 1’s in the true scenery will occur

far from the origin, as well. In turns out that the appropriate time horizon is of length 212270,
Hence we define our first stopping times and the corresponding events as follows.
Definition 8.4 Let the random set T°(x) be defined as follows:

TO(x) = {t € [0,2"%*™ — ] | x[[t.t+ ng) is constant 1} . (8.14)

We arrange the elements of T°(x) in increasing order: to(0) < ... < to(|T%(x)| — 1). We set
to(2-220k) +nf if 2. 220k < |TO()],

TR0 = { 212ano otherwise. (8.15)
Finally, we define the following variant of the event Egtop,TO defined in (3.14):
2ang
ESopiro = (] {T000 < 22, |S(T00)| < 2702, T0(x) +2- 2 < TP(X) for j < k.
o (8.16)
Comparing this Definition (8.16) with the Definition (3.14) of the event Es[.)top,TO’
2amg
Eqopro = [ {T00) <210, [S(TR00)] < 2, TP (x) +2- 2™ < T(x) for j <k},
o (8.17)

one sees the only difference between the two events: The new event Egtop 7o requires the random
walk S to be much closer to the origin at the stopping times T° than the old event Egtop 7o does,

using the new length scale 270/2 rather than 2"0. In particular, we have

0 0
l?stop,TO c EstOp,TO‘ (8'18)
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Theorem 8.5 For some positive constants csg and cg7 it holds

PES o] = P[ES o] =1 = cagemm™. (8.19)

We prepare the proof of Theorem 8.5 by some definitions and lemmas. We use again the ab-
breviation J; = [-2in’, 2In3°]. Analogously to Definition (7.2), we define events Egnough back.I:

Definition 8.6 Let I C J; be an integer interval. We define

Et(a)noughback,l := {Up to time 2'20m0 /4 S visits the interval I at least 23° times }. (8.20)

Next we will see that these ”frequent returns” to the interval I in the first time steps have
large probability.

Lemma 8.7 For some constants css > 0 and csg > 0, the following holds: If I C Jy, |I| > 1, is
an integer interval, then

P[Egnoughback,f] >1- 6386_639n0- (821)

Proof. Let Ty := inf{t | S(t) € I} be the entrance time of S into I. We show first: For some
positive constants c49 and c41 (depending at most on the distribution p of S(1)) we have:

P [Ty > 21270 /8] < eqpe™ 410, (8.22)

If 0 € I, this is trivial, since S starts in 0. Otherwise I contains only positive numbers, or it
contains only negative numbers; without loss of generality we assume the first possibility. Let
z =min [ €]0,2in2’]. Consider the interval J :=] — 270 2[ C ] — 2"0 270[ and consider the exit
time H :=inf{t | S(t) ¢ J} of J. Note that H is a.s. finite.

On the one hand, we know
P[H > 1] < cype~ 02 0 (8.23)
for some constants cy2,c43 > 0 depending at most on the variance of S(1), since in every time
interval of size 22" the random walk has a positive probability to exit J, bounded away from
0. In particular, for t = 212970 /8 the probability in (8.23) is superexponentially small in ng, if
a is large enough (see Subsection 2.1).

On the other hand, since S is a martingale and since S has jump sizes bounded by [, we get
P[S(H) > 0] > 1 — (2 +1)27"0. Furthermore, using again that S has jump sizes bounded by I,
we know the following: If S(H) > 0, then S(H) € I and T7 = H, since z is the leftmost point
in I and |I| > [; the random walk cannot cross I without touching it.

Altogether, we have the following upper bound for the left hand side in (8.22):

P[H > 212070 /8 or S(H) < 0] < cqpe” 41", (8.24)

for some positive constants ¢4 and c41.

Provided the random walk visits a point € I, the probability to visit this point again at
least 23%m0 times in the subsequent 212970 /8 time steps is at least 1 — c9g272"0. This follows
from Lemma 7.2, using the strong Markov property of the random walk; recall that the law of
S with respect to P and with respect to P coincide. Combining this with (8.22) yields claim
(8.21) of Lemma 8.7. m
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We remark: Lemma 8.7 holds not only for deterministic intervals I, but also for random ones,
provided that I and S are independent. We use this below for the following specific choice of I,
which depends on the scenery &, but not on .S:

P-a.s. there is a (random) integer interval Jy C J; = [~2[n2°, 2in2°] with |Jo| > ng such that
&[Jp is constant 1; recall Definition 3.2. Just for definiteness we take the rightmost such Jy. Let

I=1() :={z€Jy |dist(z,Z\ Jo) > ng/4}; (8.25)

then I is P-a.s. well defined, and it is an integer interval containing |I| > n$/2 > [ points.

The following is a modification of Definition 7.3. We define those times ¢, for which the
random walk is in the random set I(£) and does not travel further than distance ng/4 in the
next ng steps. Correspondingly, we define a new version of the event Eypenbackrecog given in
Definition 7.3, that specifies that sufficiently many of the visits to I(&) fulfill this requirement.

Definition 8.8 Let w(k), k > 0, denote the (k + 1)st visit to the (random) set I(§) by the
random walk S. We introduce a random set TV and an event E°

when back recog :
TV .= {t e N| S(t) € I(¢) and |S(j) — S(t)| < ng/d for 0 < j—t <mnf}, (8.26)
Eghenbackrecog := {For more than 1/4 of the points k € [0,22*[ holds w(k2°™) € TY }.
(8.27)
Furthermore, we set
ED) erorr0 = {Vk € N: If TP (x) < 2'2m0, then |S(T{(x))| < 2"0/%}, (8.28)

Note that (8.28) uses again the length scale 2m0/2 in contrast to the length scale 2 in Definition
(7.1).

We prove the following modification of Lemma 7.6, that shows that E\?/henbackrecog is a likely
event.
~ d ¢ an,
Lemma 8.9 P [(Egvhenbackrecog) } < 0.92%"0
Proof. We observe as in (8.10) by the submartingale inequality:
16 Var[S(1 1
PISG) < nd/a for 0< j < nf) > 1~ 2ng B 5] =1 VDL 1 (5 99)
ng

since ng is large enough; see Subsection 2.1. Let Yj denote the indicator function of the event
{w(k29"0) € T%}; the Y}, are P-a.s. well defined. As a consequence of the strong Markov
property, the Yy, k € [0,22¢™0] are i.i.d. Bernoulli random variables; note that the stopping
times w(k29), k € N, have at least the spacing 2™ > nJ. Furthermore P[Yk =1] > 1/2,
since this probability equals the left hand side in (8.29); recall that the laws of S with respect
to P and with respect to P coincide. The claim of the Lemma now follows by the same large
deviation argument as in (7.10). m
Next, we claim the following analogue of Lemma 7.4:

Lemma 8.10 The inclusion T° 2 T N[0, 212270 — n[ holds P-almost surely.
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Proof. Assume that the event BigBlock holds; this occurs P-almost surely. Then I(£) is well
defined. Let t € TV, ¢ < 2122m0 —nT Then S(t) € I(£), and during the subsequent nj steps, the
random walk S cannot leave the interval Jy, since it does not travel farther than ng/4 (recall
definition (8.26)), and since Z \ Jy is more distant than this from I(£) (recall the definition
of 1(§)). Since £[Jy is constant 1 by definition (3.4) of the event BigBlock, this implies that
S[[t,t +nf] is constant 1; ie. t € T'. m

The following Lemma is a slight modification of Lemma 7.5; except little differences, the
proofs are also very similar.

Lemma 8.11 Assume that the events

0 0
Eno error,T9 N Eenough back,

© NEY and T°(x) D TY N[0,212°m0 —nl[  (8.30)

hen back recog

hold. Then ES 1o holds, too,
Proof. Using Egnough back, I(¢)7 We know

w(k2°M0) € [0, 212070 /4] C [0,2'29m0 — pl] (8.31)

for all k € [0,22%"0[. Since the event E0, back recog 101ds, we obtain the following by the second
hypothesis in (8.30):

ITO(x)| > [T N[0, 2!20m0 — pf[| > 2%0m0 /4, (8.32)

By Definition (8.15) of the stopping times T, this yields TP (x) < 229" for all k < (22070 /4)/(2-
22n0) = 22(@=1)no /8 The event Egoermr’TO holds, and 22(@=1)n0 /8 > 2070; recall that o and ng
are large (see Section 2.1). Hence we obtain |S(T2(x))| < 27/2 for all k € [0,29™[. Using
Definition (8.15) again, we conclude that TJQ(X) + 2220 < TP(y) is valid for j < k whenever
TP (x) < 2'29m0 which is the case at least for k € [0,29[. Summarizing, we have proven that
the event Egtop,TO holds; recall its definition (8.16). m

Next we defines those sceneries that do not contain long (i.e. longer than n2) blocks of ones
around the origin apart from those contained in Jj.

Definition 8.12 We define the event of sceneries

For every (integer) interval J C [—2[2120m0 2]212an0] \
with |J| = n3 it holds: £[J is not constant 1.

E?lOblOCkS = {5 € CZ } (833)

These sceneries turn out to be sufficiently likely.

—_

Lemma 8.13 For some positive constants cq4,cq5 holds P[§ € :goblocks] > 1 — cyqe™ 2570,

Proof. For every fixed interval J C [—2-[212em0 2. [212an0]\ J) with |J| = n? we have
P[¢[J is constant 1] = |C] ™", (8.34)

which is superexponentially small in ng. Furthermore, there are less than 41212010 gych intervals.
Thus P[¢ ¢ = | < 412'2em0|C|=75 which is still superexponentially small in ng. This

—no blocks
implies the lemma. Note that we may choose c44, c45 independent of « for ng large enough, even

though 41212070|C|="3 does depend on « (see Subsection 2.1). m
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Lemma 8.14 For some constants cyg,cq7 > 0 holds

D 170
P[(Eno error,T0

)C] < cypge” A0, (835)
Proof. Let X be defined by
X = {x € Z|z + [~In§, Inf] C [—21229m0 212120m0]\ 1}, (8.36)

As a consequence of Lemma 8.3 (with the parameters k = ng and Kk = n%) we know for every

¢ € CN such that £[[—Ind, In]] contains no block of 1’s of length n3:

P¢[¢ 0 S[[0,n{] is constant 1] < eeTm, (8.37)

Let t € N and let € € Ego blocks: Using the Markov property of the random walk, (8.37) implies
the following: ,

Pe[€ o S[(t + [0,n{]) is constant 1| S(t) € X] < e ™. (8.38)

If t < 212270 and |S(t)| > 270/2 holds, then we know S(t) € X; note that J; = [—2In3°, 2In2’]

has a distance larger than In/ from Z \ [—270/2 970/2] " and recall that S cannot travel faster
than with speed [, and that ng is large by Subsection 2.1.
Thus (8.38) implies

Pf[(Egoerror,TO)c] (839)
< P¢[There is t < 2!22m0 such that |S(¢)| > 2"/2 and € o S[(t + [0,n]]) is constant 1]

_ 3 _
S 212anoe crng S e n();

for the last inequality recall that ny was chosen large enough, depending on « (see Subsection
2.1). Combining this with Lemma 8.13 yields for some positive constants c46, c47:

p[(Eh(goerrOryTO)C:l S P[g ¢ Egoblocks] + / Pg[(EgoerronTo)c] dp S 64667047110- (8.40)
{geago blocks}
]
Proof of Theorem 8.5. From Lemmas 8.10 and 8.11 we know that

P[(Egtop,To)C] < P[(Egoerror,T())C] + p[(Egnoughback,I(g))c] + p[(Egvhenbackrecog)c]' (841)

Hence the claim of Theorem 8.5 is a consequence of Lemmas 8.7, 8.9, and 8.14. =

8.3 The stopping times T

Unfortunately, the constructed stopping times 79 are not good enough as arguments for the
first reconstruction Algorithm “Alg™”: We cannot construct more than roughly exp(constng)
reliable stopping times based on the way we build the T° stopping times; our actual construction
uses only 290 < exp(const né) of these stopping times. If we were using too many stopping
times of the type T°, we could not guarantee that they really stop the random walk with high
probability close to the origin. However, the number exp(const né) is much too small to collect
a sufficiently large puzzle for reconstructing at least the modified piece [.J; in the scenery using
our reconstruction algorithm. To illustrate this fact, we remark that we have only roughly an
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upper bound dP /dP < exp(const n%o); see Lemma 5.3. A modification of the parameters does
not solve this problem. The reconstruction algorithm “Alg™” needs as input data sufficiently
reliable stopping times, which stop the random walk close to the origin; but the stopping times
T are not reliable enough for this purpose. Thus we need an essentially improved series of
stopping times 7' to get the reconstruction algorithm started.

Our construction of 7! is partially parallel to the construction of the partial reconstruction
algorithm Alg", but it is also partially parallel to the construction of the stopping times 7'y and
T°: Roughly speaking, we collect a set of typical signals (“a puzzle”) at the very beginning and
another one at a candidate time. Instead of matching the pieces together, we just compare the
two puzzles: If the puzzles have a sufficiently high overlap, then they were generated with high
probability at roughly the same location.

Fortunately, many constructions of the previous sections can be used again, up to small
modifications: There are extra complications due to the presence of a modified domain J;. We
keep the presentation rather close to the previous sections to show the parallelism. Here is the
formal definition of the “new” puzzles and of T

Definition 8.15 We set, using the abbreviation Input, := (T%(x), x[[0, 2 - 212em0[):

Puzzlej(x) := (8.42)
{(w1,ws,w3) € Puzzlef® (Inputy) |3k € [0,2°™[: wiwawz E x[(T(x) +[0,2"°/1)) },

Puzzle[(x) = {wz € C™ | Jwy,ws € C™ 1 (wy,ws, w3) € Puzzle[y(x)} (8.43)

|Puzzlef(x) N Puzzlefg(67x)| > 2”0/3}

44
and |Puzzle[ (' x)| < 50 - 270 (844)

Tl(x) - {t c [072120471,1 _ 2 . 212&710[

Finally we define another sequence T' = (Tkl)k>0 of G-adapted stopping times with values in

[0,2120m1]: Let 1(0) < ... < t1(|TY(x)| — 1) be the elements of T'(x) arranged in increasing
order. For k € N, we set

t1(2-22mk) + 2. 21200 if 2. 22k < T ()|,

Tk}(X) = { 212an1 (84'5)

otherwise.

Note that 79(y) only depends on x[[0, 21290 [; thus Puzzlef(x) only depends on x[[0, 221220,
since 270 /] < 212am0,

The reason why we introduce Puzzler;; and Puzzlery, rather than using Puzzle; and Puzzler;
again, is explained intuitively before Lemma 8.23, below.

Next we introduce sets to control the position of the words in Puzzle[{(x). The idea behind
the following construction is roughly that from words read in J; we obtain information that could
be potentially misleading. Moreover, the sets Centery; and Centeryyp defined below will serve as
potential upper and lower bounds, respectively, for the sets of puzzle words Puzzley)(x). Hence
with their help we will control the overlap between the words in Puzzle[(x) and in Puzzle[% (6" x).

Definition 8.16 Using the abbreviation J; = [72ln%0,2ln30] from Definition 3.2 again, we
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define the following random sets:

CorPaths :=
R is an admissible piece of path, for every admissible piece of path
R € 7l0eimol R’ : [0, cyno[— Z with R'(0) = R(O) and R'(c1np—1) :‘R(clno—l) (8.46)
holds £ o R' = £ o R, and there is such a path R’ which takes at (’
least one value in Jj.
Corrupted := {{ o R € C°'"° |R € CorPaths }, (8.47)
Centery := {w € C™ | w is a (left or right) ladder word of {[([—11-2™0,11-2"™]\ J;)},
(8.48)
Centery := Centery U Corrupted, (8.49)
Centeryyr := {w € cano | ?[(lf_a;lggblzzﬁée;nz‘gﬁ FEQnO/Q’ 970/2)) } (8.50)

For the following lemma it will be helpful to recall the Definition 6.15 of the event B%, s (J1).

This events basically says that no two i— resp. j— spaced words ¢[I, resp. £[J in [-11-2™0 —11-
2]\ J; look the same, no matter of they are both read in the same or in different directions.

Lemma 8.17 There exist constants c1g,c19 > 0 such that the following holds:

P [(B"O (Jl))C} < crgec19M0, (8.51)

unique fit

Proof. We observe that the event B[, ¢ (1), introduced in Definition 6.15, depends only on
the part £[(Z \ J1) of the scenery outside the region J;. Since the probability measures P and
P coincide on the o-algebra generated by & [(Z\ J1) and S according to part 2 in Lemma 8.1,
this implies

P [(Biaues (7)) = P [ (Bliquos (7)) (8.52)

unique fit unique fit

Thus the claim (8.51) follows from Lemma 6.33. m
The next lemma controls the size of our upper and lower bounds Center;; and Centerypy,
respectively.

Lemma 8.18 |Center;| < 46 -2, |Corrupted| < ng', and thus |Centeryy| < 50 - 270, If the event
B (J1) holds, then |Centeryyy| > omno/3,

unique fit

Proof. The first statement is obvious, since there are at most 23 - 2™ choices for the leftmost
point of a ladder interval in [—11-2"0,11 - 2™0], and there is the binary choice “left” or “right”.

We show |Corrupted| < ng! next: The number of pairs (R(0), R(cing — 1)) € Z? with R €
CorPaths is bounded by (|J1|4+c1n0l)? < ndl; recall that ng was chosen to be large (see Subsection
2.1). Furthermore, every such pair gives rise to at most a single element of Corrupted, since
different paths R, R’ € CorPaths with the same starting point and the same end point generate
the same word £o R = £o R by Definition (8.46). This shows |Corrupted| < ng! < 4-270 since ng
is large enough by Subsection 2.1. Using the definition of Centeryr, we obtain |Centeryy| < 50-2"0.

Finally we show |Centeryyy| > 270/3. We observe that [—2 - 270/2 2. 270/2] \ [—2m0/2 2m0/2] jg
disjoint from J;. Assuming that B (J1) holds, this implies that all right ladder intervals

unique fit
Il,IQ - [—2 . 2”0/2,2 . 2”0/2] \ [_2710/272710/2]’ with Il 7& IQ ’Il| = |IQ| = C1No > Cony generate
pairwise different ladder words (£[I1)—, # (£[I2)—. Since there are at least 2n0/2 _ ¢py > 2m0/3
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such ladder intervals (ng is large enough; see Subsection 2.1), there are as least as many ladder
words w € Centeryiy. ®

The T stopping times should not erroneously stop the random walk too far from the origin:
If the random walk at time ¢ is at a location x far away from the origin, we want the puzzle

Puzzle(6"x) collected there to have only a small overlap with the puzzle Puzzle[y(x) collected
at the starting point, provided Puzzle?\‘}(étx) is not anyway too large. The next lemma helps us

to control this event, using the potential upper bound Centery; of Puzzle[{)(x).
Lemma 8.19 For every x € Z with |x| > 2-2m0 4 2[212%10 gnd for every t € [0, 212 it holds:

P [S(t) = =, |Puzzlefd(8"x)| < 50 - 2™, and |Centery; N Puzzlefd (6 y)| > 2no/3 ] < exp{—2"0/41.
(8.53)

Proof. We set

Puzzlepd (') if S(t) = x and |Puzzle[(6"x)| < 50 - 2™,
0 else.

Outside, ; := { (8.54)

The random set Puzzle[$(6"x) only depends on x[[t,t +2-2'2™0[ and the random walk cannot
travel a longer distance than 2(2'2%"0 during the time interval [¢,t + 2 - 2'29m0[. Given S(t) = =
and |z| > 2270 4 2[212970  the random walk S cannot enter the interval [—2 270, 2.2"] during
the time interval [t, ¢+ 2-212270[; thus Outside, ; depends only on S and £[(Z\ [-2-2m0, 2. 270]).
Hence, using Lemma 8.1 and J; C [—2-2"0,2.2"0], the random piece of scenery £[[—2-2"0,2.2"0]
and the random set Outside, ; are independent with respect to P. Let 7, denote the set of all
right ladder intervals I C [—2-2m0,2.2"]\ J; with |I| = ¢ing. We define 7; similarly with
“right ladder intervals” replaced by “left ladder intervals”. We partition Z, into cingl_ subsets,
Z/(1),...,Z/(cinpl—):

T(k) = {I €T, | minI € k + cnolZ} (8.55)
Let k € [1, c1ngl—] be fixed. Note that the cardinality N := |Z/(k)| fulfills the bounds
9no 4 .9n0 4.2"n0
< — |J1‘ —2cing < N < (856)

Clnolﬂ o Cl’l’LolH Clnola‘

Furthermore, the elements of Z} (k) are pairwise disjoint; thus the family (§[71)rezy(x) is i.i.d. and
independent of Outside, ; (with respect to P). For I € T, we set X} := 1 for (£[I)_, € Outside,;,
and X7 := 0 otherwise. Similarly for J € 7, let X}, denote the indicator function of the event
{({[J)~ € Outside, +}. Then, conditioned on a given value of Outside, ¢, the Bernoulli random
variables X%, I € Z/(k), are i.i.d. with respect to P[ - |Outside, ;]. Furthermore we have, using
|Outside, ¢| < 50 - 2"0:

P[X} =1 | Outside, ;] < |Outside, ;||C| 71l < 50e(log2—c1log|Chno —. 4, (8.57)

We set Y} = > 1eT1(k) X7. Consequently this random variable is stochastically dominated
by a Binomial(V, p)-distributed random variable; note that Y} is binomially distributed with
respect to the conditional measure P[ - |Outside, ¢]. A rough but simple large deviation estimate
suffices for our purposes: Using the exponential Chebyshev inequality, we have for a > 0 and
o :=log(a/p) > 0:

P[Yy > Na] < E[e”% N < (pe”U + (1 = p)e )N = (1 +a - p)p*a™)¥ (8.58)
< (e"p"a=")™ = exp{Na(1 —log(a/p))}
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In particular, we obtain for the choice a = N~1270/3 /(4¢yngl_.) > 272"0/3 /16 (where we have
used (8.56)), using (8.57): o = log(a/p) > (c1log|C| — 2 log 2)ny — log 800 > c1(log |C|)no/2 + 1;
the last inequality holds by our choice of ¢; and ng (see Subsection 2.1). Hence we obtain:

P1>_ Xiz

1T,

< cingl_, exp {

3" P[Yi > Na| < erngl-. exp{Na(1 — log(a/p))}
k=1

2710/3] cinol—

log |C]|

[

2"0/3} ;exp{ gno/4}. (8.59)

The same argument works for left ladder intervals, too:

HPIRE

JeLy

2n0/3

exp{—2"0/4}, (8.60)

We know |Corrupted| < nj! < 270/3/2 (see Lemma 8.18), and hence

2n0/3
|Center;yNOutside, ;| < |Center;NOutside, ¢|+ |Corrupted| < |Center;NOutside, 4|+ (8.61)
by Definition (8.49) of Centeryy. Combining this with (8.60) and (8.59), we obtain
B N 9ono/3
P [|Centern N Outside, ;| > 2"0/3} < P ||Center; N Outside, ;| > (8.62)

2n0/3 no /3

< exp{—2"0/4},

+P > X >

Je

The claim (8.53) is an immediate consequence of this bound and the Definition (8.54) of
Outside, ;. =

The following is a modified version of Lemma 6.37. To this end it may be useful to recall
Definition (6.21) of the event Bfeiognstralght(Jl). Up to a possible perturbation by .Ji, this event
describes that ladder paths can be distinguished from non-ladder paths by some uniqueness

property of their color record.

Lemma 8.20 There exist positive constants cos and cog not depending on ng such that:

P (B e (1)) < ez (5.63)
Proof. The main difference between Lemma 6.37 and Lemma 8.20 is the usage of the modified
measure P instead of P. However, the event B cogn stralght(J1)7 introduced in definition (6.21),
only depends on the part £[(Z \ Ji) of the scenery outside J;. Indeed: Given R € AdPaths(11 -
2" cing) with R(eing — 1) — R(0) ¢ {(cino — 1)I—, (c1ing — 1)I—}, there are two cases: Either
some R € AdPaths(12-2m ¢1ng) with R(0) = R(0) and R(cing—1) = R(cing— 1) takes at least
one value in J; (“case 17), or no such R touches J; (“case 2”).

e In case 1, we do not need to evaluate £ o R of £ o R in order to check the defining condition
(6.21) of BI° (J1).

recogn straight
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e In case 2, £o R and € o R depend only on £[(Z )\ Jy).

On the other hand, the distributions of £[(Z \ J;) with respect to P and with respect to P are
the same by Lemma 8.1. Thus

(B (J1))] = PI(BL (J1))7] < ease™ 2070 (8.64)

recogn straight recogn straight

follows from Lemma 6.37. This proves the claim (8.63). m
We need the following modification of Definition 6.18:

Definition 8.21

For all (wy, w2, w3) € Puzzle[®(Inputy) and every admissible piece

Fmo ._ Jofpath R : [0,3cino[— [-11-270,11 - 2™] with { o R = wiwows

only ladder * holds: wsy is a ladder word of &[[—11 - 2™ 11 - 2™] or wy €
Corrupted.

(8.65)

Here is an analogue of Lemma 6.19; recall the definition (6.9) of the events B} paths,

Lemma 8.22 We have

no no no
Ball paths,T0 N Brecogn straight (Jl) < Eonly ladder" (866)

Proof. The proof is partially similar to the proof of Lemma 6.19. Assume the event B:ﬁ’ paths, 70"

Bl ogn straight (/1) holds, and let (wy, wa, w3) € Puzzlef®(Inputy), R € AdPaths(11 - 2", 3cino)
with £ o R = wiwows. We prove by contradiction that E’ggly ladder DOlds: Assume that ws is not
a ladder word of &[[—11-2"0 11 - 2"0] and wy ¢ Corrupted. We distinguish two cases: Either
the middle piece R[[cing,2c1ng[ of R belongs to CorPaths when being time-shifted back to the

origin (“case 17), or it does not (‘“case 2”).

e In case 1, wy = (£ o R[[cing, 2c1no[)— € Corrupted by Definition (8.47), which contradicts
our assumption.

e In case 2, using Definition (8.46) of CorPaths, there is an admissible piece of path R’ :
[c1no, 2c1n9[— Z with R'(cing) = R(cing) and R'(2¢ing — 1) = R(2¢1ng — 1) such
that w) = (£ o R')_, # (£ o R[[e1no, 2cinp[)— (“case 2.17), or all admissible paths
R’ : [c1ng, 2cinog[— Z with R'(c1ng) = R(eing) and R'(2¢1no — 1) = R(2¢ing — 1) do
not touch Jy and fulfill £ o R’ = £ o R[[c1no, 2¢1n0| (“case 2.27).

— In case 2.1, we take a path R’ with the properties mentioned above. Let R :
[0,3cing[— [—11-2"0 11 - 2"] be the admissible piece of path which on [c1n0, 2¢1n0[

is equal to R’ and otherwise is equal to R. We have £ o R = wjwhws. Since
B:l?paths 7o holds (recall its definition (6.9)), this implies that the random walk S

follows the path of R within time 2270 from a stopping time of TIS, k < 29m0,
The same is valid for R, maybe with a different stopping time 7. In other words:
(w1, wh, w3) € PrePuzzle™ (Inputy) and (wi,we,ws) € PrePuzzle™ (Inputy). This im-
plies the contradiction (w1, ws,ws) ¢ Puzzle[® (Input).

— In case 2.2, we use that R[[c1ng, 2c1ng[ is not a ladder path, since wy is not a ladder
word of &[[—11-2m0 11 - 2™]. This case contradicts the occurrence of the event
B ogn straight (1), using the definition (6.21) of this event and the defining condition
of case 2.2.
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Thus all cases lead to a contradiction; this proves the Lemma. =
Roughly speaking, next lemma shows that Puzzlery collects ladder words on a length scale
0(2™) away from the origin, only perturbed by a few “corrupted” words, provided the “typical”

events Eonlyladder and EStop 7o hold. Formally, the statement gets stronger by using E?

rather than the smaller event E

stop,TY
stop. 70 but this fact is not essential.

However, it is essential to use Puzzle[[j or Puzzle[y) rather than Puzzle/® or Puzzle[: We can
be sure that Puzzle[{) collects its words at most in a neighborhood of the origin of size 0(2”0),
provided that the stopping times T fulfill their specification, i.e. provided the event EstOp 70
holds. On the other hand, Puzzle] may collect words up to the length scale O(22™0) away
from the origin, even if the stopping times 7Y fulfill their specification. Recall that for Puzzle[?,
words are collected on a time scale O(2270) away from the stopping times 7°. Here, it does
not help us that Puzzle still typically collects words on a length scale O(2"°) away from the
origin, due to the scaling in the central limit theorem. To see this, recall that we are searching
for overlaps |Puzzle (x) N Puzzle[d(6'x)| of the small size 2"/% only. If we were using Puzzley
rather than Puzzlery, such an overlap could arise in the tails, and we had to deal with the length

scale O(22™), which is much too large.

Lemma 8.23 If Egglyladder N E stop, 70 holds, then Puzzle[y)(x) € Centery.

Proof. Assume that Eonlyladder NEY stop, 0 holds, and let wo € Puzzley)(x). Take wy,ws € C™
with (w1, w2, w3) € Puzzlej(x) by (8 43). Then by (8.42), (wl,wg,wg) € Puzzle® (Inputy),
and wjwows occurs in the observations y at most 20/l time steps after some stopping time
TY(x), 0 < k < 29" Since ES p.ro bolds, we have |S(TY)| < 2™0; thus wiwows is read in x
while the random walk follows some admissible piece of path R with values in [-2-2"0, 2.2"0] C
[—11-2"0,11-2™0]. Since Egr?ly ladder DOlds, this implies: w, is a ladder word of £[[—11 -2”0, 11-2m0],
or wy € Corrupted. If wy is a ladder word of £[[—11-2"0 11 - 2™0], we distinguish two cases:

o If wy is a ladder word of £[([—11-2"m0 11 -2"0]\ J;), then wy € Centery.

o If wy is a ladder word of {[[—11-270, 11 - 2™], but not of &[([—11 - 2m0,11 - 2] \ J;),
then also wo € Corrupted. To see this, we use the Definitions (8.46) and (8.47), and the
following fact: If w is a ladder path and 7 is an admissible piece of path with the same
length, starting point, and end point as w, then T = 7.

In any case, we have ws € Center; U Corrupted = Center;;. m
Next we will show that the events we defined have sufficiently large probability.

Lemma 8.24 There exist constants cog, ca1 > 0 such that:

P (B;ll(l)paths,TO) N Estop TO] < ¢gpe”C20m0 (8.67)
Proof. This is a special case of Lemma 6.34, applied to 7 = T° and P’ = P. The hypothesis
of Lemma 6.34 is fulfilled, since part 2 in Lemma 8.1 implies that the distribution of S with
respect to P and with respect to P coincide. m

Recall Definition (7.1): E* ={Vk e N: If T} (x) < 2'29™ then |S(T}(x))| < 2™}.

no error,T!

Lemma 8.25 For some constants cyg,cq9 > 0 holds p [El T1:| > 1 — cygec9m0,

no error
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Proof. Using Definition 8.15 of 7', we obtain:

P [El ] (8.68)

no error,T!

5 [For all ¢ € [0,2129™[ it holds: if |Puzzle[(x) N Puzzle[y(6x)| > 20/3 and
|Puzzlefd(6%x)| < 50 - 2", then |S(t + 2129m0)| < 2m

V

For i = 0,1, the random walk S cannot travel farther than (212%™ within time 212%™, Since ny
is large (recall Subsection 2.1) and nq = 21v70) | we know 2-270 4 2[2120m0 < 9™ _ [912am0  Thyg
for all t € [0,2120m1 we have |S(t + 2129m0)| < 2™ or 2. 270 4 2]2129m0 < |§(¢)| < [2120M1; recall
that S(0) = 0. Thus the right hand side in (8.68) is greater than or equal to

5 [There does not exist t € [0, 22", such that |Puzzle[d(x)NPuzzlepd (6" x)| > 2mo/3
and |Puzzlef (6% x)| < 50 - 2™ and 2 - 2m0 4 2[2120m0 < |§(t)| < [212em
_ [Puzzlef;(x) C Centery, and there does not exist t € [0,2122m1 [ such that
>P ]CenterH N Puzzle[d (8%x)| > 270/3 and |Puzzle]y(6'x)| < 50 - 2" and
9. 9M0 + 212120&710 < ’5( )| S l2120m1

) 2t2em1—1 | |Centeryr N Puzzle”°(9t )| > 2no/3,
> P[Puzzle[y)(x) C Centeryy] — Z |Puzzlely (0" x)| < 50 - 2", and . (8.69)
=0 2.2m0 4 2]2120m0 < \S(t)| < [212am

Using Lemma 8.19, each summand in the last sum has the upper bound 2[212e™ ~exp{—2”0/ 4
note that there are at most 2[2'2%"1 possible values for x = S(t) with 2. 270 4 2[2129m0 < || <

12an1 no
2 . Furthermore, the occurrence of the events EStOp 705 Brecogn straight(Jl) and Ballpaths T0

implies Puzzle[y)(x) € Centeryy by Lemma 8.22 and Lemma 8.23. Thus the right hand side in
(8.69) has the lower bound

p[Estop o 1 Brecogn stralght(‘]l) N B;Lll paths, TO] gi%am . glgtems . eXp{—2n0/4}
2 P[Estop TO] B P[(B:Leocognstralght(‘]l)) ]
— P((BL et 70)° N Eop o] — 2l exp{24(log 2)any — 27/} (8.70)

We estimate the last expression, using Theorem 8.5, Lemmas 8.20 and 8.24, and the fact ny =
2Ll (recall Definition 3.4). We obtain the following lower bound for the right hand side in
(8.70):

—C37N10 —C26M0

— cgre” "0 — 2] exp{24(log 2)042L\/%J — 2"0/4} > 1 — ¢yge” “9M0,
(8.71)

1-— C36€ — C25€

For the last step, note that exp{24(log 2)042L\/”_0J —no/ 4} is superexponentially small in ng. The
constants c4g and cq9 need not depend on «, since ng was chosen large and a-dependent (see
Subsection 2.1). =

The following definition introduces a variant B} paths 11 of the event B™ all paths, 70" Instead of

the time scale O(22™0) after a stopping time, it uses the time scale O(2™), and instead of the
length scale O(2m0), it uses the length scale O(2"0/2). We need to use the new event B%0 pathsIT
rather than using exclusively the old event Ballpaths 1o, since we have to deal with Puzzlery
rather than using Puzzler; again, as was explained above: We need to control whether the
random walk follows sufficiently many admissible paths within the shorter time horizon O(2"0)
after a TY-stopping time.
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Definition 8.26 We define the event

no
Ball paths I -

VR € AdPaths(3 - 2"0/2 3c1ng) 3k € [0,2970[ 35 € [0,270 /1] : (.72)
TimeShift ¥+ (R) € § : :

The next lemma provides yet another modification of Lemma 6.34. Up to a change of pa-
rameters, its proof is very similar to the proof of Lemma 6.34.

Lemma 8.27 There exist constants csg,c51 > 0 not depending on ng such that:
P (Bgllpathsll) N Egtop,TO < csoe” M. (8.73)

Here, it is important to use the stricter specification E stop.T0 of the stopping times 70 rather
than Estop,TO' Knowing the location of the random walker only on a scale O(2") rather than
O(2™/?) will not suffice: Within O(2"0) after a stopping time, the random walker will typically
move only a distance O(2"0/2) and thus might be still too far from the origin, unless we assume
the stricter bound |S(T?)| = O(2"0/2).

Proof of Lemma 8.27. Let k < 2 and R € AdPaths(3 - 2"/2, 3¢ ng). We set

Bt = {3j 0,27/ Timeshitt"i+i(R) C 5} (8.74)

£0 TR0 < 2P [S(TR(x))| < 2m/2, (8.75)
stop, 70,k *— TO( )+2- 22n0 < TIS(X) forj < k ) ’

AR =BG o \ B (8.76)

In the following calculations, R runs over the set AdPaths(3 - 270/2 3¢ing):

20nQ 200 —1
. no,k
Estop 70 \BallpathsII 70 — (ﬂ Estop 70 k) \ (ﬂ U BR )
R k=0
2an0 1 2anqg 2410 —1
_ ’I’L(),
-U N [(ﬂ T) By
R k=0

C U ﬂ AR, (8.77)
Taking the probability of these events, we estimate:

P [(B:l?pathsll 70)° ﬁEstop TO} < |AdPaths(3 - 2"0/2, 3¢1ny) |maxP m Anm (8.78)
|AdPaths(3 - 270/2 3¢1ng)| < 7 - 270/2| M|3eamo (8.79)
roang 1 2am0 _1 ~ ‘
Pl () Ap* II 2Aaw* | AR, (8.80)
L k=0 k=0 j<k
PART (AR | < P {(BRY) | Eqopron N [V AR | (8.81)
i<k i<k

the last statement follows from the elementary fact P[AN B|C] < P[A|BN C]. We have
Czo’k = Egtop,TO,k N <k A7 € Fro, i.e. one can decide whether the event C’go’k holds by
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observing ¢ and S(0),...,S(TY). Furthermore, if C’%O’k holds, then |S(TP(x))| < 2™/2. As
consequence of the local Central Limit Theorem we get: there is a constant coo > 0 such that
for all z,y with |z| < 3-270/2 and |y| < 2"/? one has

Ply + S(j) = « for some j € [0,2"%0 /1 — 3cing]] > 29270/, (8.82)
note that 2™/l — 3cing has the order of magnitude 2. Thus by the strong Markov property:

inf P [S(TIS + 7) = z for some j € [0,2m0/]] ‘ Cgo’k] > 5927 "0/2 (8.83)
|z|<3-2m0/2

for some constant cso > 0. Once it is in the starting point x, the probability that S follows an
admissible path R € AdPaths(3-270/2 3¢;ng) for the next 3¢;ng — 1 steps is bounded from below
3617‘L

by poit". Here pimin = min{u({z})|z € M} is the smallest positive probability for a jump.
Therefore, using the strong Markov property again:

P Bt | Cpk] = esp2mor 2y, (8.84)

We combine (8.78)—(8.81) and (8.84) to obtain

P [Egtop,TO \B:Ll(lJpaths II} <7 2n0/2’M|301n0(1 - C522_”0/2 ?rfilrlno)2an0
< Texp {no <10%2 + 3¢ log |M|> — cypemolalog2+3c1 log pimin —(log 2)/2)} ’ (8.85)

where we used 1 —x < e * for z = 0522_”0/211?13111”0 < 1. Now alog 2+ 3¢ 1og pimin — (log 2)/2 > 0
by our choice of « in Subsection 2.1; thus the right hand side of the last inequality converges to
0 superexponentially fast as ng — oco. Note that we may choose an upper bound csge™ "0 for
the right hand side in 8.85, where neither c5g nor c¢s1 depend on « or ¢;. This is true since ng
was chosen large enough, depending on ¢; and «; recall Subsection 2.1. This proves the lemma.
]

Next we modify Definition 6.4 to define two new events. Roughly speaking, these events
measure whether within a certain space horizon but outside the “corrupted” region J;, any
ladder word can be read along admissible paths only roughly at one single location, thus making
ladder words very characteristic for their location.

Definition 8.28

B For every right ladder path m € ([—212%7%0, 212%70] \ J;)l0c1m0/2] and
ngnals := { for every admissible piece of path 7/ € AdPath(2122"0, cing/2): ,  (8.86)
If Somr = Lon’, then 7(0) < #’(0) and 7(c1no/2—1) > 7'(c1no/2—1).
~ For every right ladder path = € ([—2122"0,2[22"0] \ J;)l0:c170l and
E;ﬁgnalsn := { for every admissible piece of path ' € AdPath(2122%0 ¢1ny): . (8.87)
If o =¢&on’, then m(cing/2) = '(c1n0/2).

Note that 7’ in the last two definitions may well have some of its values in J;. We prove the
following modification of Lemma 6.38:
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Lemma 8.29 There exist constants cog > 0, cog > 0 not depending on ng such that:

P [(BLe)¢] < cagemommo. (8.88)
Proof. Take a right ladder path
T e (21220 212%m0] \ Jy)l0ernol (8.89)

and an admissible piece of path 7/ € AdPath(2 - (2" ¢;n/2) with 7(0) > 7/(0). We show by
induction over j € [0, cin/2[ with the abbreviation I = [0,j + 1[ and I’ = [0, j[:

Pleon[I'=¢on[I'] =|C|7. (8.90)

Indeed, (8.90) holds for j = 0. For the induction step j — j + 1, we note that 7 (j) is right of all
m(i) and 7' (i), i < j, since 7 is a right ladder path and 7(0) > #/(0). Thus o (j) is independent
of the family (£ o w[I’,€ o #'[I") with respect to P, even if 7’ touches the “corrupted” domain
Ji. This is true because m does not touch Ji, and £[J; is independent of {[(Z \ J;) by Lemma
8.1. Therefore, using our induction hypothesis,

P[gowjj = ¢on'[I] ) | (8.91)
= Pl¢on[I'=¢on'[I']- Pleon(j)=Eon'(j)] =77

For j = c¢1ng/2 we obtain that
Pl¢ o w[[0, c1ng/2[= € o 7'[[0, e1ng/2[] < |C|~C1™0/2. (8.92)

A similar inductive argument, processing the path m in reverse direction, i.e. “from the right
to the left”, shows that the bound (8.92) also holds when the above condition 7(0) > #/(0) is
replaced by 7(cing/2 — 1) < 7'(e1ng/2 — 1). There are not more than 4 - 2270 + 1 < 5. [2%n0
possible choices for the right ladder path 7, and not more than 5 - 12270| M|°1%0/2 choices for the
admissible path 7/. We conclude:

P[(B™

signals

)°] < 51220 . 5. [22M0| M|emo/2 || emo/2, (8.93)

This implies the claim (8.88), since |C| > | M| and ¢; was chosen large enough; recall Subsection
21. =

The following lemma is a variant of Lemma 6.5, which takes care of the “corrupted” domain
Ji.
Lemma 8.30 B . C E™

signals = signalsII*

Proof of Lemma 8.30. Assume that the event ngnals occurs. Let m € ([—2-122"0,2-22"0] \

J1)0c1mol be a right ladder path and 7/ € AdPath(2-1227%0, ¢1ng). Assume that or = £on’ holds.
Looking at the first half of 7 and 7" only (with the first points (0, 7(0)), (0,7(0)) dropped), we
see m(c1ng/2) > 7'(e1no/2), since ngnals holds. By the same argument, looking at the second
half of 7 and 7" only, we infer m(cino/2) < 7(c1ng/2). Therefore m(c1ng/2) and 7'(cing/2)

coincide. This shows that E;gnals i holds. m
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Lemma 8.31
Assume that the event B0 all paths,70 [ BSlgnalS NEY, oo holds. Let I C [—6-2m0,6-2"0]\ J; be a
right ladder interval with |I| = 3cing, and let wy, we, w3 € CA™ with ({[1)—, = wiwows. Then

(w1, wa, w3) € Puzzle{® (Inputy).

This lemma is only a small modification of Lemma 6.7; except of the extra care needed for
handling the corrupted domain Jp, its proof is almost the same.

Proof of Lemma 8.31. Given a right ladder interval I as in the assumption of the lemma, we
decompose it into three pieces: Let I = I1 U I, U I3, where Iy, Io, and I3 denote the left, middle,
and right third of I, respectively; thus ({[;)— = w;, ¢ = 1,2,3. Since the event Bgupathb 70
holds, the straight path which steps through the elements of I from the left to the right in 3ci1ng
steps is realized at least once by the random walk (S(t))¢>0 within time 22" of a stopping time

T,S , k < 290 Observing & along such a straight path generates the word wiwows. Thus
(w1, w2, ws3) € PrePuzzle™ (Input). (8.94)

Let w), be such that (wq,w), w3) € PrePuzzle™ (Input). In order to prove the claim (w1, we, w3) €
Puzzle[® (Input) it remains to show: wy = w). When the event EY stop.T0 holds, the stopping times
of T?, k < 2°m0_ all stop the random walk (S(t));>0 somewhere in the interval [—270,2m0].
Within time 227 the random walk moves at most a distance 122", Because of wjwhws €
PrePuzzle™ (Input), the word wlw’ng occurs somewhere in the observations at most 227 time
steps after a stopping time 770 5y k< 29" Within time 22n0 after a stopping time, the random
walk cannot be further away from the origin than [2270 4270 < 2.12270 gince the event Estop 70
holds. Thus there exists an admissible piece of path R’ : [0,3cing[— [~2 - 122", 2 - [2270] such
that £ o R’ = wiwhws. Let R:[0,3cing[— I C [—2-122™0,2.]2270] denote the right ladder path
which passes through I from the left to the right. Note that R does not meet the “corrupted”
domain Ji, although we need not assume that R’ does not meet J;. We know & o R'[[0, cing[=
§oR[[0, c1ngl= wy and (§o R'[[2c1n0, 3cing[)— = (o R[[2c1n0, 3cing[)— = w3. Furthermore, the
event E51gnalsII Bgonals holds; see Lemma 8.30. Abbreviating = := ¢1ng/2 and y := 5¢1n0/2,
this implies R/(x) = R( ) and R'(y) = R(y). But R[[z,y] is a right ladder path; thus R'[[z, ]
must be the same right ladder path, since only right ladder paths can travel equally fast to the
right as R does. Hence wy = (§0 R[[c1no, 2c1n0[)— = (o R'[[c1no, 2c1n0[)— = wh. This finishes
the proof of Lemma 8.31. m

Next we show that under appropriate conditions Centeryyy is indeed a lower bound for Puzzle[)(x).

Lemma 8.32 If the event B™?
Puzzley(x).

7o N BallpathS n N Bno N E . TO holds, then Centeryyp C

all paths, signals

T
Proof. Assume that Baﬁ)paths 7o N Ballpatth N BSlgnals N EStop ro holds, and let wo € Centeryy.

Then wo = (£[I)_, for some right ladder interval I C [—2 - 270/2 2. 2n0/2] \ [~270/2 9no/2]
|I| = c1ng. We take the larger right ladder interval I’ D I, |I’| = 3c¢ing, with ¢1ng extra points
to the left of I and another ¢;ng extra points to the right of I; then I’ C [—3-2m0/2 3.2m0/2)\ .J; C
[—6-270,6-270]\ Jy; note that dist(Jy, Z\ [—2"0/2,270/2]) > ¢1ngl and dist([—2-270/2,2.270/2] 7\
[—3 - 270/2 3. 270/2]) > ¢ingl; recall that ng is chosen large enough (Subsection 2.1). Then

(&[1)— = wiwows for some wi,ws € C™. Using that the events B™ B and

all paths, 70> “~signals’

E% o hold, Lemma 8.31 implies (wq,ws,w3) € Puzzle[®(Inputy). Let R denote the (unique)

stop,
right ladder path R : [0,3cing[— I'. Since B!y holds, the random walk S follows R

all paths IT
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(time-shifted) at most 2" /I time steps after some stopping time T} (x), k € [0,2°"[. Then
£ o R = wywows; thus (wy,ws,w3) € Puzzlepj(x) by Definition (8.42); hence wy € Puzzlef{(x)
by Definition (8.43). This proves the lemma. m

Definition 8.33 We set

Elenter = {|Centerrr N Puzzlely(x)| > 210/3 and |Puzzlefy(x)| < 50 - 2m0 }, (8.95)
E<1:enter = {g € CZ P[ center | 6] } . (896)
The sets Elor and ZL o, play an analogous role for the stopping times 7 as E™ s and

play for the “higher level” stopping times in Section 7.

—m
Sreconst f

1 — cpze™54m0 |

Lemma 8.34 For some positive constants cs3 and csy holds P[¢ € ZL...] >

Proof. We claim first that

NE°

1
B T0 NBj stop,T0 N Brecogn straight (Jl) unlque fit (Jl) < Ecenter (897)

all paths, I N B

all paths1 signals

holds. To prove this, assume that the intersection of events on the left hand side in (8.97) occurs.
Since the B™ B™ B" and E° stop,70 OCCUL, Lemma 8.32 implies |Centerp N

0
all paths, 70> “all pathsII signals’
Puzzle[{(x)| = |Centeryyr|. Using that the event Bumqueﬁt(']l) Lemma 8.18 yields |Centeryyy| >

2n0/3 and we conclude |Centeryyp N Puzzle[d(y)| > 270/3. From Lemma 8.22 we know that

no . .
the event EOnly ladder OCCUTS, since Ballpaths 70 N Bietogn stralght(Jl) occurs. Using this and the

occurrence of the event EJ pros Lemma 8.23 implies |Puzzle[y (x)| < |Centeryy|, and finally
Lemma 8.18 yields ]CenterH] < 50 - 2", Summarizing, we know |[Puzzle[)(x)| < 50 - 2", Thus
we have shown that the event El ... occurs; this proves the claim (8.97). Taking probabilities

0
and using E oo & Estop,TO’ we get

center]

P [B 1l paths, T N Ball pathsII N Bmgnals N E stop,T9 N Brecogn stralght(‘]l) N Bunlque ﬁt(‘]l)}

> P [Estop T01| B P [(Baﬁ?paths TO) N Estop T01| P |:(B§H paths II) n Estop TO]
P

— P | (Bl g straigs )| = P [ (Bl = P [ (BlSiquesn (7))
> 1-— C55€ T C54T0 (8.98)

P[E!
>

for some positive constants css and cs4 by Theorem 8.5 and Lemmas 8.24, 8.27, 8.20, 8.29, and
8.17. Hence we obtain the following;:

[5 §é ‘—'center] - ]5 |:P[( center)C ’ E] :| S P[(Eclenter) ] S 6556_654n0; (899)

Ml'—‘
[\Dl'—‘

recall that P[|¢] and P[-|¢] coincide. m
The following definition is yet another modification Definition 7.3.
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Definition 8.35 Let v(k) denote again the (k + 1)st visit of S to the origin. We define

U . |Centeryrp N Puzzled (6 x)| > 2m0/3
THEX) = {t e and |Puzzle (6" x )| < 50-2m0 ’ (8.100)
For more than 1/4 of the points k € [0,22%™[
1 . )
Ewhenbackrecog T { holds U(kQle) e Tl/(§7X) . (8101)

Here is yet another analogue to Lemma 7.4:

Lemma 8.36 If the event B™ i
paths,
Tll(f, X) [ 7212om1 —92. 212an0[

1
70 N Ballpatth n B;gnals N Est p,T0 h’OZd‘Sf then T (X) 2

Proof. Assuming that the event B"? all paths, 70 N Ballpatth N Bs1gna1s N ESto 70 holds, we know

Centeryip € Puzzlel)(x) by Lemma 8.32; thus |Puzzlefg(x) N Puzzle}‘{}(ﬁt )| > |Centeryr N
Puzzlepd(6x)| for all ¢. This implies the claim T'(x) 2 TY(&, x) N [0,2120m — 2. 212an0[ of
the lemma recall Definition (8.44) of T!(y). =

The following lemma is another variant of Lemma 7.5; only the stopping times Ty and ']I"f

are replaced by T! and TV, respectively, and T} is replaced by T,

Lemma 8.37 Assume that the events
1 1
L T! N Eenough back nE,

no error, when back recog

Then E o T holds, too.

and TL(x) 2 TY(&,x) N [0,2120m1 — 2. 212an0[ poid.

Proof. Using that the event E! . holds, we know

enough bac
v(k2°™) € [0,2"2™ /8] C [0,212*™ — 2. 2120 (8.102)

for all k € [0,22¢™[; recall the definition (7.2) of the event Eenoughback’
denotes the k24"1-st return time of the random walk S to the origin.

Since the event Ewhenbackrecog holds, we obtain |T!(x)| > |TY(&, x) N[0, 2!2am — 2. 212an0| >
22am /4. By Definition (8.45) of the stopping times T'!, this yields T}}(x) < 2'?¢™ for all
k< (2%0m1/4)/(2-22m) = 22(07Um /8 The event EL . m holds, and 22(@=Hm /g > gon;
recall that a and ny > ng are large (see Section 2.1). Hence we obtain |S(T}(x))| < 2™ for all
k € ]0,2%"[; recall the definition (7.1) of the event Enoerror r1- Using Definition (8.45) again, we
see that le(x) +2-22m < Tl(x) is automatically fulfilled for j < k whenever T} (x) < 212em1,

which is the case at least for k € [0,2°"1]. Summarizing, we have proven that the event E

and recall that v(k2%™")

stop,T'!
holds; recall its definition (3.14). m
The following Lemma is another modification of Lemma 7.6.
Lemma 8.38 We have the bound
~ 2an
P [(Ewhenbackrecog) N {f € _'center} ] < 0'92 ' . (8103)

Proof. We define the indicator functions Yy = ly,goaniyerive,y)y, £ > 0. In particular,
E! _ {2—2am SEly s 1/4} holds. Note that v ((k +1)2071) — y(k20™) >

when back recog
20m1 > 9. 9120m0  Recall that P and P differ only in the distribution of the scenery ¢, but not
in the law of the random walk S. In particular, P[-|{] = P[-|¢] holds. By the strong Markov
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property of the random walk (S(k))g>0, conditioned under &, the variables (Y)r>0 are iid.
Bernoulli variables. Furthermore, we have E[Y}, | €] = P[EL o, | €] > 1/2 whenever & € =
Just as in (7.10), the exponential Chebyshev inequality implies for these sceneries &:

center

22an1
22&77.1

<0.9

1/4 | ,—3/4
L) (8.104)

P [(E/1x11\7h<enbackrecog;)C ‘ 5] < < 5

Taking the expectation with respect to P, this implies the claim (8.103), just as in (7.11). m

Proof of Theorem 3.8. Recall that E° C EO

stop. 70 S Egtop 10° Using this and Lemmas 8.36 and
8.37, we get

1 no no 1
Eno error,T'! N E, enough back N EWheIl back recog N Ball paths, 70 N Ball pathsII N 351gnals N Estop 70 < Estop,Tl :

(8.105)
Since Eenoughback depends only on .S but not on &, we have P[(Eenoughback) | = P[(Eelnoughback)c].

Thus, using Lemmas 8.25, 7.2, 8.38, 8.34, 8.24, 8.27, 8.29, and Theorem 8.5, we know
P[(Bliopr)°] (8.106)
<P [(Enoerror 1)1+ PlE S ougnbac)] + P [(Eghen backrecog) N 1€ € Etenter }]
+ P [€ ¢ Blenter) + P[(B:l(l)paths 70)° N Esmp o] + P[(B:l(l)paths )N Estop 70
+ P[(B32a0)T + Pl(ESop)°]
< cage MO 4 35270 0.9 - 5070 gy 0200
+ c50e” B0 coge” M0 4 cgge” BTN

—C4No
<e ;

since ng is chosen large enough (see Subsection 2.1) m
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