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1. Introduction

Let {Sk}k≥0 denote a simple symmetric (Bernoulli) random walk on the line, starting

from 0, i.e. at each step, the random walk visits either of its two neighbours with equal

probability 1/2. Define, for n ≥ 0 and x ∈ Z,

(1.1) ξxn
def
=

n∑
k=0

1l{Sk=x},

which counts the number of visits of the site x by the random walk in the first n steps.

Let

U(n)
def
=
{
x ∈ Z : ξxn = sup

y∈Z
ξyn

}
,

which stands for the set of the most visited sites or favourite sites of the random walk.

We (measurably) choose an arbitrary point in U(n), say,

(1.2) U(n)
def
= max

x∈U(n)
x,

which is referred to by Erdős and Révész [12] as the (largest) favourite site of {Sk}0≤k≤n.

We mention that all the results for U(n) stated in this paper remain true if “max” is

replaced for example by “min” in (1.2).

The process U(n) has some surprising properties. For example, it is proved by Bass

and Griffin [2] that it is transient, in the sense that limn→∞ |U(n)| = ∞ almost surely.

More precisely, they obtain the following:

Theorem A ([2]). With probability one,

lim inf
n→∞

(log n)a

n1/2
|U(n)| =

{
0 if a < 1,
∞ if a > 11.

Remark. The exact rate of escape of |U(n)| is unknown.

Concerning the upper limits of U(n), the following is established by Erdős and Révész

[12] and by Bass and Griffin [2], using totally different methods:

Theorem B ([12], [2]). We have,

lim sup
n→∞

U(n)

(2n log logn)1/2
= 1, a.s.

3



Theorem B confirms that both U(n) and Sn
def
= max0≤k≤n Sk satisfy the same law

of the iterated logarithm (LIL). A natural question is: do they have the same upper

functions? Of course, for the random walk, the upper functions are characterized by the

classical Kolmogorov test (also referred to as the Erdős–Feller–Kolmogorov–Petrowsky or

EFKP test, cf. Révész [21, p. 35]).

Theorem C ([12]). There exists a deterministic sequence (an)n≥0 of non-decreasing

positive numbers such that with probability one,

U(n) < an, for all sufficiently large n,

Sn > an, for infinitely many n.

As a consequence, U(n) and Sn have different upper functions.

Remark. An example of the sequence (an) satisfying Theorem C is explicitly given in

[12], cf. also Révész [21, Theorem 11.25]. Whether it is possible to obtain an integral test

to characterize the upper functions of U(n) remains an unanswered question. See Révész

[21, pp. 130–131] for a list of 10 (ten) other open problems for U(n) and U(n).

We suggest to study the upper limits of U(n) in this paper. Intuitively, when U(n)

reaches some extraordinarily large values, it would be very close to Sn. The question is:

how close can U(n) be to Sn? The fact that the process n 7→ Sn − U(n) is transient,

follows from Révész [21, Theorem 13.25]. Our aim here is to determine the exact escape

rate of the process. This problem is communicated to us by Omer Adelman.

Theorem 1.1. There exists a universal constant c0 ∈ (0,∞) such that

lim inf
n→∞

(log logn)3/2

n1/2

(
Sn − U(n)

)
= c0 , a.s.

Remark 1.1.1. The rate n1/2/(log logn)3/2 might somewhat seem surprising. One might

have expected to see for example n1/2/(log logn)1/2 (the rate in Chung’s LIL for the

random walk), or even something like n1/2/(log n)a (for some a > 0; the rate in Hirsch’s

LIL). (For these LIL’s, cf. Chung [5], Hirsch [14], or Csáki [7] for a unified approach). The

correct rate of escape of Sn −U(n) is therefore a kind of “compromise” between the rates

in the Chung and Hirsch LIL’s.

Remark 1.1.2. An immediate consequence of Theorem 1.1 is that almost surely for all

large n, if Sn < cn1/2/(log logn)3/2 (where c < c0), then all the favourite points are in

the negative part of the line.
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Theorem 1.1 provides information about the absolute distance between U(n) and Sn.

However, one may wonder how U(n) can be close to Sn in the scale of the latter. Our

answer to this is a self-normalized LIL stated as follows.

Theorem 1.2. With probability one,

lim inf
n→∞

(log logn)2 Sn − U(n)

Sn
= j2

0 ,

where j0 ≈ 2, 405 is the smallest positive root of the Bessel function

x 7→ J0(x) =

∞∑
k=0

(−x2/4)k

(k!)2
.

Remark 1.2.1. It follows from Theorems 1.1 and 1.2 that if (Sn − U(n))/Sn is as

small as possible, then Sn should be very large. More precisely, the events {Sn − U(n) <

c1Sn(log logn)−2} and {Sn < c2(n log logn)1/2}, where c1c2 < c0, cannot occur simulta-

neously for infinitely many n with probability one.

We conclude the introduction part by mentioning that the problem of the favourite

sites for random walk is also studied by Tóth and Werner [24]. See also Khoshnevisan and

Lewis [17] for the Poisson process, Borodin [4], Eisenbaum [10] and Leuridan [19] for the

Wiener process, Eisenbaum [11] for the stable Lévy process, Bertoin and Marsalle [3] for

the drifted Wiener process, and Hu and Shi [15] for the Wiener process in space.

The rest of the paper is as follows. Section 2 is devoted to some preliminaries for

Brownian local times and Bessel processes. Theorem 1.2 is proved in Section 3, and

Theorem 1.1 in Section 4.

In the sequel, ci (3 ≤ i ≤ 22) denote some (finite positive) universal constants, except

that when their values depend on ε, they will be written as ci(ε). We adopt the usual

notation a(x) ∼ b(x) (x → x0) to denote limx→x0 a(x)/b(x) = 1. Since we only deal with

(possibly random) indices n and t which ultimately tend to infinity, our statements —

sometimes without further mention — are to be understood for the situation when the

appropriate index is sufficiently large. We also mention that our use of “almost surely” is

not systematic.
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2. Preliminaries

In the rest of the paper, {W (t); t ≥ 0} denotes a real-valued Wiener process with

W (0) = 0. There exists a jointly continuous version of the local time process of W ,

denoted by {Lxt ; t ≥ 0, x ∈ R}, i.e. for all positive Borel function f ,∫ t

0

f(W (s)) ds =

∫ ∞
−∞

f(x)Lxt dx, t ≥ 0.

We shall be working on this jointly continuous version.

Consider the process of the first hitting times for W :

(2.1) T (r)
def
= inf

{
t > 0 : W (t) > r

}
, r > 0.

Let us recall the following well-known Ray–Knight theorem, cf. Ray [20], Knight [18], or

Rogers and Williams [23, Theorem VI.52.1 (i)]:

Fact 2.1. The process {L1−x
T (1); x ≥ 0} is continuous inhomogeneous Markovian. When

0 ≤ x ≤ 1, it is a squared Bessel process of dimension 2 starting from 0, and becomes a

squared Bessel process of dimension 0 for x ≥ 1.

Remark 2.1.1. We recall that when d ≥ 1 is integer, a d-dimensional Bessel process can

be realized as the Euclidean norm of an Rd-valued Wiener process. On the other hand,

a squared Bessel process of dimension 0 is a diffusion process with generator 2xd2/dx2,

absorbed once it hits 0.

Notation. Throughout the paper,

{Z(t); t ≥ 0} def
= squared Bessel process of dimension 0, with Z(0) = 1,(2.2)

ζZ
def
= inf

{
t > 0 : Z(t) = 0

}
,(2.3)

and

{Q(t); t ≥ 0} def
= squared Bessel process of dimension 2, with Q(0) = 0,(2.4)

{H(t); t ≥ 0} def
= squared Bessel process of dimension 4, with H(0) = 0,(2.5)

LH
def
= sup

{
t > 0 : H(t) = 1

}
.(2.6)
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In words, ζZ denotes the life-time of Z, and LH is the last exit time of H from 1. Since

the 4-dimensional squared Bessel process H is transient, the random variable LH is well-

defined.

The next is a collection of known results on the Bessel processes, which we shall need

later. Fact 2.2 is a duality theorem for Bessel processes of dimensions 0 and 4. A more

general result can be found in Revuz and Yor [22, Exercise XI.1.23]. Fact 2.3, which gives

an absolute continuity relation for the normalized Bessel process, can be found in Yor

[25, p. 52]. Fact 2.4 concerns the lower tail probabilities of Q and H. It is borrowed

from a celebrated theorem of Ciesielski and Taylor [6]. The probability transition density

function for Q in Fact 2.5 is well-known, cf. Revuz and Yor [22, Chap. XI]. Fact 2.6 is a

straightforward consequence of Anderson’s general inequality for Gaussian measures (cf.

[1]).

Fact 2.2. We have {
Z(ζZ − t); 0 ≤ t ≤ ζZ

}
law
=
{
H(t); 0 ≤ t ≤ LH

}
,

where “
law
= ” denotes identity in distribution. In words, a Bessel process of dimension 0,

starting from 1, is the time reversal of a Bessel process of dimension 4, starting from 0,

killed when exiting from 1 for the last time.

Fact 2.3. For any bounded functional F , we have

E
[
F
(H(sLH )

LH
; 0 ≤ s ≤ 1

)]
= E

[ 2

H(1)
F
(
H(s); 0 ≤ s ≤ 1

)]
.

Fact 2.4. As x goes to 0,

P
(

sup
0≤s≤1

Q(s) < x
)
∼ c3 exp

(
− j

2
0

2x

)
,

where j0 is as before the smallest positive root of J0, and c3 is an absolute constant whose

value is explicitly known. As a consequence, there exists an absolute constant c4 such that

for all t > 0 and x > 0,

(2.7) P
(

sup
0≤s≤t

Q(s) < x
)
≤ c4 exp

(
−j

2
0

2

t

x

)
.
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Similarly, there exist c5 and c6 such that for all positive t and x,

(2.8) P
(

sup
0≤s≤t

H(s) < x
)
≤ c5 exp

(
−c6

t

x

)
.

Fact 2.5. The probability transition density of the (strong) Markov process Q is given

by, for t > 0,

(2.9) pt(x, y) =
1

2t
exp
(
−x+ y

2t

)
I0

(√xy
t

)
, x ≥ 0, y > 0,

where I0 is the modified Bessel function of index 0.

Fact 2.6. Let t > 0, and let {B(s); s ≥ 0} be an R2-valued Wiener process starting from

0. If f is a real deterministic function defined on [0, t], then for all x > 0,

P
(

sup
0≤s≤t

‖B(s) + f(s)‖ < x
)
≤ P

(
sup

0≤s≤t
‖B(s)‖ < x

)
,

where “‖ · ‖” is the Euclidean norm in R2.

Finally, let us recall three results for local times. The first (Fact 2.7) is Kesten’s LIL

for the maximum local time, cf. [16]. For an improvement in form of integral criterion, cf.

Csáki [8]. The second (Fact 2.8), which concerns the increments of the Wiener local time

with respect to the space variable, is due to Bass and Griffin [2]. The third (Fact 2.9) is a

joint strong approximation theorem, cf. Révész [21, pp. 105–107].

Fact 2.7. With probability one,

lim sup
t→∞

(2t log log t)−1/2 sup
x∈R

Lxt = 1.

Fact 2.8. For any ε > 0, as t goes to infinity,

(2.10) sup
x∈Z

sup
x≤y≤x+1

|Lxt − L
y
t | = o(t1/4+ε), a.s.

Fact 2.9. (Possibly in an enlarged probability space), there exists a coupling for the

Bernoulli walk {Sk}k≥0 and the Wiener process {W (t); t ≥ 0}, such that for all ε > 0, as

n goes to infinity,

max
x∈Z
|ξxn −Lxn| = o(n1/4+ε), a.s.,(2.11)

|Sn −W (n)| = O(log n), a.s.,(2.12)
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where ξxn and Lxn denote the local times of (Sk) and W respectively.

Remark 2.9.1. The approximation rate in (2.11) is not optimal, but is sufficient for our

needs. For the best possible rates, cf. Csörgő and Horváth [9].

3. Proof of Theorem 1.2

Without loss of generality, we shall be working in an enlarged probability space where

the coupling for {Sk}k≥0 and W in Fact 2.9 is satisfied. Recall that Lxt is the local time

of W . For brevity, write

(3.1) W (t)
def
= sup

0≤s≤t
W (s), t ≥ 0.

The main result in this section is the following theorem.

Theorem 3.1. Let ϕ(t)
def
= j2

0/(log log t)2. There exists ε0 ∈ (0, 1) such that for all 0 <

ε < ε0, we have,

(i) almost surely for all sufficiently large t,

(3.2) sup
0≤x≤(1−(1−ε)ϕ(t))W (t)

Lxt > sup
x>(1−(1−ε)ϕ(t))W (t)

Lxt +
t1/2

(log t)1+ε
;

(ii) almost surely, there exists a sequence (tn) ↑ ∞, satisfying

(3.3) sup
−∞<x≤(1−(1+ε)ϕ(tn))W (tn)

Lxtn < sup
x>(1−(1+ε)ϕ(tn))W (tn)

Lxtn −
t
1/2
n

(log tn)1+ε
.

By admitting Theorem 3.1 for the moment, we can now easily prove Theorem 1.2.

Proof of Theorem 1.2. Fix a small ε > 0. Let {Sk}k≥0 and W be the coupling in Fact

2.9. According to (2.12), for all large n,

(1− (1− ε)ϕ(n))W (n) ≤ (1− (1− ε)ϕ(n))Sn +O(log n)

≤ (1− (1− 2ε)ϕ(n))Sn.(3.4)

In the last inequality, we have used the following well-known LIL’s (cf. for example Révész

[21, pp. 35 and 39]): for a > 0 and almost surely all large n,

(3.5)
n1/2

(log n)1+a
≤ Sn ≤ (1 + a)(2n log logn)1/2.
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For other applications later, we mention that (3.5) has a continuous-time analogue (Révész

[21, p. 53]): for a > 0 and almost surely all large t,

(3.6)
t1/2

(log t)1+a
≤W (t) ≤ (1 + a)(2t log log t)1/2,

or, equivalently, for a > 0 and almost surely all large r,

(3.7)
(1− a)r2

2 log log r
≤ T (r) ≤ r2(log r)2+a.

Applying (3.2), (2.11) and (2.10), and in view of (3.4), we obtain (writing bε(n)
def
= 1− (1−

2ε)ϕ(n) for brevity):

sup
0≤x≤bε(n)Sn;x∈Z

ξxn > sup
x>bε(n)Sn;x∈Z

ξxn +
n1/2

(log n)1+ε
− n1/4+ε

> sup
x>bε(n)Sn;x∈Z

ξxn.

By the definition of U(n) (cf. (1.2)), this yields that (almost surely) for all large n,

U(n) ≤ bε(n)Sn. Therefore

lim inf
n→∞

(log logn)2 Sn − U(n)

Sn
≥ (1− 2ε)j2

0 , a.s.

This implies the lower bound in Theorem 1.2, as ε can be as close to 0 as possible. The

upper bound in the theorem can be proved exactly in the same way, using (3.3) instead of

(3.2). tu

To prove Theorem 3.1, we need the following two lemmas.

Lemma 3.2. Recall r 7→ T (r) from (2.1). For any y > 0,

P
(

sup
x≤0

LxT (1) < y
)

= 1− 2

y

(
1− e−y/2

)
.

Consequently, for all 0 < y ≤ 1,

(3.8) P
(

sup
x≤0

LxT (1) < y
)
≥ c7 y.

Proof. Let as before Q and Z be squared Bessel processes of dimensions 2 and 0 respec-

tively, with Q(0) = 0 and Z(0) = 1. Assume they are independent. By the Ray–Knight
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theorem (cf. Fact 2.1 in Section 2), supx≤0L
x
T (1) has the same law as Q(1) supt≥0 Z(t).

Since Z is a linear diffusion process in natural scale (Revuz and Yor [22, Chap. XI]), we

have P( supt≥0 Z(t) < z) = 1− z−1 for all z > 1. Accordingly, by conditioning on Q(1),

P
(

sup
x≤0

LxT (1) < y
)

= P
(
Q(1) sup

t≥0
Z(t) < y

)
= E

[ (
1− Q(1)

y

)
1l{Q(1)<y}

]
.

Recall that Q(1) has the exponential distribution, with mean 2, this immediately yields

the lemma. tu

Lemma 3.3. Let Q be a 2-dimensional squared Bessel process starting from 0. There

exists a universal constant c8 such that for all 0 < b ≤ a < 1,

(3.9) P
(

sup
0≤t≤a

Q(t) > sup
a≤t≤1

Q(t)− b
)
≤ c8

a
exp
(
−j0

√
a−1 − 1

)
.

Proof. Write Λ1 for the probability term on the left hand side of (3.9). Since Q can

be considered as the squared modulus of a planar Wiener process, by conditioning on

{Q(t); 0 ≤ t ≤ a} and using Anderson’s inequality (Fact 2.6),

Λ1 ≤ P
(

sup
0≤t≤1−a

Q̃2(t) < sup
0≤t≤a

Q(t) + b
)
,

where Q̃2 is an independent copy of Q. Now, applying (2.7) yields

Λ1 ≤ c4 E exp
(
−j

2
0

2

1− a
sup0≤t≤aQ(t) + b

)
= c4 E exp

(
−j

2
0

2

a−1 − 1

sup0≤t≤1 Q(t) + b/a

)
≤ c4 E exp

(
−j

2
0

2

a−1 − 1

sup0≤t≤1 Q(t) + 1

)
.

= −c4
∫ ∞

1

exp
(
−j

2
0 (a−1 − 1)

2x

)
dx P

(
sup

0≤t≤1
Q(t) > x− 1

)
,

= c4
j2
0 (a−1 − 1)

2

∫ ∞
1

exp
(
−j

2
0 (a−1 − 1)

2x

)
P
(

sup
0≤t≤1

Q(t) > x− 1
) dx

x2
,

the last identity following from integration by parts. By the usual Gaussian tail estimate,

P(sup0≤t≤1 Q(t) > x− 1) ≤ c9 x3/2 exp(−x/2) for all x ≥ 1. Accordingly,

Λ1 ≤
c10

a

∫ ∞
0

exp
(
−j

2
0 (a−1 − 1)

2x
− x

2

) dx√
x

=
c10

a

√
2π exp

(
−j0

√
a−1 − 1

)
.
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We have used the fact that
∫∞

0
x−1/2 exp(−p/2x − qx/2) dx =

√
2π/q exp(−√pq ) (for

positive p and q). This yields (3.9). tu

The rest of the section is devoted to the proof of Theorem 3.1. For the sake of clarity,

we prove (3.2) and (3.3) separately.

Proof of (3.2). Fix a small ε > 0, and define

rn = rn(ε) = exp(n1−ε),

δn = δn(ε) =
(1− 7ε)j2

0

(log log rn)2
.

Θn = inf
{
t ≥ T (rn−1) : sup

0≤x≤(1−δn)rn

Lxt − sup
(1−δn)rn≤x≤rn

Lxt < rn − rn−1

}
.

Clearly, for each n, Θn is a stopping time with respect to the natural filtration of W .

Moreover, on {T (rn−1) < Θn <∞},

sup
0≤x≤(1−δn)rn

LxΘn = sup
(1−δn)rn≤x≤rn

LxΘn + (rn − rn−1).

Consider the events, on {Θn <∞},

En =
{

sup
−∞<x≤(1−δn)rn

(LxT (rn) − LxΘn) < rn − rn−1

}
,

Fn =
{

sup
x≥(1−δn)rn

LxT (rn) > sup
0≤x≤(1−δn)rn

LxT (rn) − 2(rn − rn−1)
}
.

On the event {T (rn−1) < Θn ≤ T (rn)} ∩En,

sup
x≥(1−δn)rn

LxT (rn) ≥ sup
x≥(1−δn)rn

LxΘn

= sup
0≤x≤(1−δn)rn

LxΘn − (rn − rn−1)

> sup
0≤x≤(1−δn)rn

LxT (rn) − 2(rn − rn−1).

This means

(3.10)
(
{T (rn−1) < Θn ≤ T (rn)} ∩En

)
⊂ Fn.

Consider now the process {W̃ (t)
def
= W (t + Θn)−W (Θn); t ≥ 0}, on {Θn < ∞}. By

the strong Markov property, W̃ is again a Wiener process, independent of FΘn , where
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{Ft}t≥0 denotes the natural filtration of W . We can define the local time L̃ and first

hitting time T̃ for W̃ exactly as L and T for W . Clearly, for all t ≥ 0 and x ∈ R,

(3.11) L̃xt = L
x+W(Θn)
t+Θn

− Lx+W(Θn)
Θn

.

Assume T (rn−1) < Θn ≤ T (rn). Then W (Θn) ≥ (1− δn)rn, which implies T (rn)−Θn ≤
T̃ (δn rn). In view of (3.11), we have, on {T (rn−1) < Θn ≤ T (rn)},

En ⊃
{

sup
x≤0

L̃x
T̃ (δnrn)

< rn − rn−1

}
.

Since {T (rn−1) < Θn ≤ T (rn)} is an FΘn–measurable event, combining this with (3.10)

gives

(3.12) P(Fn) ≥ P
(
T (rn−1) < Θn ≤ T (rn)

)
P
(

sup
x≤0

LxT (δnrn) < rn − rn−1

)
.

By scaling, the second probability term on the right hand side is

= P
(

sup
x≤0

LxT (1) <
rn − rn−1

δn rn

)
≥ P

(
sup
x≤0

LxT (1) <
c11(ε)

nε

)
≥ c12(ε)

nε
,

by means of (3.8). It follows that

(3.13) P
(
T (rn−1) ≤ Θn ≤ T (rn)

)
≤ nε

c12(ε)
P(Fn) + P

(
Θn = T (rn−1)

)
.

By the scaling property of W ,

P(Fn) = P
(

sup
0≤t≤δn

L1−t
T (1) > sup

δn≤t≤1
L1−t
T (1) −

2(rn − rn−1)

rn

)
.

According to the Ray–Knight theorem (cf. Fact 2.1),

P(Fn) = P
(

sup
0≤t≤δn

Q(t) > sup
δn≤t≤1

Q(t)− 2(rn − rn−1)

rn

)
,

where Q is a 2-dimensional squared Bessel process (with Q(0) = 0) as in (2.4). Since

2(rn − rn−1)/rn < δn (for large n), we can apply Lemma 3.3 to arrive at

P(Fn) ≤ c8

δn
exp
(
−j0

√
1

δn
− 1

)
≤ n−(1+2ε).

13



Moreover,

P
(

Θn = T (rn−1)
)

= P
(

sup
0≤x≤(1−δn)rn/rn−1

LxT (1) < sup
x≥(1−δn)rn/rn−1

LxT (1) +
rn − rn−1

rn

)
≤ P

(
sup

0≤x≤1−δn
LxT (1) < sup

x≥1−δn
LxT (1) +

2(rn − rn−1)

rn

)
= P(Fn)

≤ n−(1+2ε).

In view of (3.13), we have
∑
n P(T (rn−1) ≤ Θn ≤ T (rn)) < ∞. By the Borel–Cantelli

lemma, almost surely for all large n and t ∈ [T (rn−1), T (rn)],

sup
0≤x≤(1−δn)rn

Lxt ≥ sup
x≥(1−δn)rn

Lxt + (rn − rn−1).

Since for t ∈ [T (rn−1), T (rn)],

rn − rn−1 ≥
rn

(log rn)2ε
≥ W (t)

(logW (t))2ε
≥ t1/2

(log t)1+3ε
,

(the last inequality following from (3.6)), and we also have

(1− δn)rn = rn −
(1− 7ε)j2

0rn

(log log rn)2

≤ rn−1 −
(1− 8ε)j2

0rn

(log log rn)2

≤W(t)− (1− 9ε)j2
0 W (t)

(log log t)2
,

This yields (3.2) (replacing ε by a small constant multiple of ε), hence the first part in

Theorem 3.1. tu

Proof of (3.3). Fix an ε > 0 and define

rn = n3n,

δn =
(1 + 22ε)2j2

0

(log log rn)2
.

Consider the events

Gn =
{

sup
x≥rn−(rn−rn−1)δn

(LxT (rn) − LxT (rn−1))

≥ sup
x≤rn−(rn−rn−1)δn

(LxT (rn) − LxT (rn−1)) + j0 δ
1/2
n (rn − rn−1)

}
.
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By the strong Markov property,

P(Gn) = P
(

sup
x≥rn−rn−1−(rn−rn−1)δn

LxT (rn−rn−1)

≥ sup
x≤rn−rn−1−(rn−rn−1)δn

LxT (rn−rn−1) + j0 δ
1/2
n (rn − rn−1)

)
= P

(
sup

x≥1−δn
LxT (1) ≥ sup

x≤1−δn
LxT (1) + j0 δ

1/2
n

)
.

According to the Ray–Knight theorem (Fact 2.1), the last probability term equals

P
(

sup
0≤t≤δn

Q(t) ≥ sup
δn≤t≤1

Q(t) ∨Q(1) sup
t≥0

Z(t) + j0 δ
1/2
n

)
,

where Q is as before a 2-dimensional squared Bessel process starting from 0, and Z is a

squared Bessel process of dimension 0, starting from 1, independent of Q. Therefore,

P(Gn) ≥ P(sup
t≥0

Z(t) ≤ 1 + ε)P
(

sup
0≤t≤δn

Q(t) ≥ (1 + ε) sup
δn≤t≤1

Q(t) + j0δ
1/2
n

)
.

Write c13(ε)
def
= P(supt≥0Z(t) ≤ 1 + ε) = ε/(1 + ε). Accordingly,

P(Gn) ≥ c13(ε)P
(

sup
0≤t≤δn

Q(t) ≥ (1 + 2ε)j0δ
1/2
n , sup

δn≤t≤1
Q(t) ≤ j0δ1/2

n

)
≥ c13(ε)P

(
(1 + 2ε)j0δ

1/2
n < Q((1 − ε)δn) < (1 + 4ε)j0δ

1/2
n ,

(1 − 6ε)j0δ
1/2
n < Q(δn) < (1− 4ε)j0δ

1/2
n ,

after time δn, the process Q hits ε2j0δ
1/2
n before hitting j0δ

1/2
n ,

and after hitting ε2j0δ
1/2
n , it spends at least time 1 below j0δ

1/2
n

)
.

Recall that Q is a (strong) Markov process. Write Px (for x ≥ 0) the probability under

with Q starts from x (thus P0 = P). Define for r > 0,

σ(r) = inf
{
t > 0 : Q(t) = r

}
.

By virtue of the strong Markov property,

(3.14) P(Gn) ≥ c13(ε)× Λ2(n)× Λ3(n)× Λ4(n)× Λ5(n),

where

Λ2(n)
def
= P

(
(1 + 2ε)j0δ

1/2
n < Q((1 − ε)δn) < (1 + 4ε)j0δ

1/2
n

)
,

Λ3(n)
def
= inf

(1+2ε)j0δ
1/2
n <x<(1+4ε)j0δ

1/2
n

Px
(

(1 − 6ε)j0δ
1/2
n < Q(εδn) < (1− 4ε)j0δ

1/2
n

)
,

Λ4(n)
def
= inf

(1−6ε)j0δ
1/2
n <x<(1−4ε)j0δ

1/2
n

Px
(
σ(ε2j0δ

1/2
n ) < σ(j0δ

1/2
n )

)
,

Λ5(n)
def
= P

ε2j0δ
1/2
n

(
sup

0≤t≤1
Q(t) < j0δ

1/2
n

)
.
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Let us begin to estimate Λ2(n). By scaling,

Λ2(n) = P
( (1 + 2ε)j0

(1− ε)δ1/2
n

< Q(1) <
(1 + 4ε)j0

(1 − ε)δ1/2
n

)
≥ P

(
Q(1) >

(1 + 2ε)j0

(1− ε)δ1/2
n

)
− P

(
Q(1) >

(1 + 4ε)j0

(1− ε)δ1/2
n

)
.

Since logP(Q(1) > x) ∼ −x/2 for x→∞, it follows that for large n,

(3.15) Λ2(n) ≥ exp
(
− (1 + 3ε)j0

2(1− ε)δ1/2
n

)
≥ exp

(
− (1 + 5ε)j0

2δ
1/2
n

)
.

To estimate Λ3(n), we consider the function (for x > 0)

h(x)
def
= Px

(
(1− 6ε)j0δ

1/2
n < Q(εδn) < (1 − 4ε)j0δ

1/2
n

)
=

1

2εδn

∫ (1−4ε)j0δ
1/2
n

(1−6ε)j0δ
1/2
n

exp
(
−x+ y

2εδn

)
I0
(√xy
εδn

)
dy,

the last equality following from (2.9). It is known that as z goes to infinity, I0(z) ∼
ez/
√

2πz (cf. for example Gradshteyn and Ryzhik [13, p. 962]). Hence I0(z) ≥ ez/z for

all sufficiently large z. Accordingly, for all (1 + 2ε)j0δ
1/2
n < x < (1 + 4ε)j0δ

1/2
n ,

h(x) ≥ 1

2εδn

∫ (1−4ε)j0δ
1/2
n

(1−6ε)j0δ
1/2
n

εδn√
xy

exp
(
−

(
√
x−√y )2

2εδn

)
dy

≥ 1

2εδn

εδn

j0δ
1/2
n

exp
(
− (
√

1 + 4ε−
√

1− 6ε )2j0

2εδ
1/2
n

)
2εj0δ

1/2
n

≥ ε exp
(
−18εj0

δ
1/2
n

)
,

the last inequality following from
√

1 + 4ε−
√

1− 6ε ≤ 6ε. Therefore, for all large n,

(3.16) Λ3(n) = inf
(1+2ε)j0δ

1/2
n <x<(1+4ε)j0δ

1/2
n

h(x) ≥ ε exp
(
−18εj0

δ
1/2
n

)
.

The third term Λ4(n) can be explicitly computed. By diffusion (or martingale) theory, for

x ∈ (ε2j0δ
1/2
n , j0δ

1/2
n ),

Px
(
σ(ε2j0δ

1/2
n ) < σ(j0δ

1/2
n )

)
=

log(j0δ
1/2
n )− log x

log(j0δ
1/2
n )− log(ε2j0δ

1/2
n )

,

from which it follows that

(3.17) Λ4(n) ≥ c14(ε).
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Finally, by triangular inequality and Fact 2.4,

(3.18) Λ5(n) ≥ P
(

sup
0≤t≤1

Q(t) < (1− ε)2j0δ
1/2
n

)
≥ exp

(
−(1 + 3ε)

j0

2δ
1/2
n

)
.

Assembling (3.14)–(3.18):

P(Gn) ≥ c15(ε) exp
(
− (1 + 22ε)j0

δ
1/2
n

)
,

which implies
∑
n P(Gn) =∞. By the strong Markov property, Gn are independent events.

Therefore, according to the Borel–Cantelli lemma, almost surely there are infinitely many

n satisfying

sup
x≥rn−(rn−rn−1)δn

LxT (rn)

≥ sup
x≤rn−(rn−rn−1)δn

LxT (rn) − sup
x∈R

LxT (rn−1) + j0 δ
1/2
n (rn − rn−1).

Applying (3.7) and Kesten’s LIL for local time (cf. Fact 2.7) yields that for all large n,

sup
x∈R

LxT (rn−1) ≤
√

3T (rn−1) log log T (rn−1) < rn−1(log rn−1)2,

which is smaller than j0 δ
1/2
n (rn − rn−1)/2. Therefore, infinitely often,

sup
x≥rn−(rn−rn−1)δn

LxT (rn) > sup
x≤rn−(rn−rn−1)δn

LxT (rn) +
j0

2
δ1/2
n (rn − rn−1).

Since by (3.7),

j0

2
δ1/2
n (rn − rn−1) ≥

√
T (rn)

(log T (rn))1+ε
,

and since
rn − (rn − rn−1)δn ≥ rn − rnδn

≥ rn −
(1 + 23ε)2j2

0 rn

(log log T (rn))2

= W (T (rn))− (1 + 23ε)2j2
0 W (T (rn))

(log logT (rn))2
,

this yields (3.3) (replacing ε by a constant multiple of ε), and hence completes the proof

of Theorem 3.1. tu
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4. Proof of Theorem 1.1

That the liminf expression in Theorem 1.1 should be a constant (possibly zero or

infinite) can be seen by means of a 0–1 argument. Indeed, write Sn =
∑n

i=1Xi, so that

{Xi}i≥1 are iid Bernoulli variables. Let

c0
def
= lim inf

n→∞

(log logn)3/2

n1/2

(
Sn − U(n)

)
,

and we now show that c0 is almost surely a constant.

By the Hewitt–Savage 0–1 law, it suffices to check that c0 remains unchanged under

any finite permutation of the variables {Xi}i≥1. By induction, we only have to treat the

case of permutation between two elements, say Xi and Xj . Without loss of generality, we

can assume that |j − i| = 1.

For typesetting simplification, we write the proof only for the case i = 1 and j = 2.

Let

X̃k
def
=

{
X2, if k = 1,
X1, if k = 2,
Xk, if k ≥ 3,

and define the corresponding simple random walk S̃0 = 0 and

S̃n =

n∑
k=1

X̃k.

There is also a local time process ξ̃xn associated with {S̃n}n≥0, and the (largest) favourite

point is denoted by Ũ(n). For all x ∈ Z\{−1, 1}, ξ̃xn = ξxn, and |ξ̃yn − ξyn| ≤ 1 if y = ±1.

It is proved by Bass and Griffin [2] that ξyn ≤ supx∈Z ξ
x
n−2 (for y = ±1), almost surely

for all large n. Therefore

U(n) = Ũ(n), eventually.

Since max0≤k≤n S̃k = Sn for all large n, this proves that c0 remains unchanged under the

permutation between X1 and X2.

Consequently, c0 is almost surely a constant.

It remains to show that c0 lies in (0,∞). The finiteness of c0 is a straightforward

consequence of Theorem 1.2 and the usual LIL for random walk (cf. (3.5)), with c0 ≤
√

2 j2
0 .

The positiveness of c0 follows from the following general result and the strong approx-

imation, exactly in the same way as Theorem 1.2 from Theorem 3.1. For details of the

argument, cf. Section 3.
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Theorem 4.1. Let ψ(t)
def
= t1/2/(log log t)3/2. There exist universal constants c > 0 and

ε0 ∈ (0, 1) such that for all 0 < ε < ε0 and almost surely all sufficiently large t,

(4.1) sup
x≤W (t)−cψ(t)

Lxt > sup
x>W (t)−cψ(t)

Lxt +
t1/2

(log t)1+ε
.

The rest of the section aims at the proof of Theorem 4.1, which is based on several

preliminary estimates. We start with the following estimates for Gaussian tails, which will

be frequently used later. Recall that Q, H are squared Bessel processes of dimensions 2

and 4 respectively, both starting from 0 (cf. (2.4) and (2.5)), and that T is the process of

first hitting times for W , cf. (2.1). Then for all positive x, t and r,

P
(

sup
0≤s≤t

Q(s) > x
)
≤ c16 exp

(
− x

3t

)
,(4.2)

P
(

sup
0≤s≤t

H(s) > x
)
≤ c17 exp

(
− x

3t

)
,(4.3)

P
(
T (r) < t

)
≤ exp

(
−r

2

2t

)
,(4.4)

P
(
T (r) > t

)
≤ r√

t
.(4.5)

Recall that Z is a squared Bessel process of dimension 0, starting from 1, and ζZ is

its life-time, cf. (2.2)–(2.3).

Lemma 4.2. There exist universal constants c18, c19 and c20 such that for all x > 0,

P
( 1

ζZ
sup
t≥0

Z(t) < x
)
≤ c18 exp

(
−c19

x

)
,(4.6)

P
( 1

ζZ
sup
t≥0

Z(t) > x
)
≤ c20 exp

(
−x

9

)
,(4.7)

Proof. Let LH be the last exit time from 1 of H, cf. (2.6). By Fact 2.2, supt≥0 Z(t)/ζZ

has the same law as sup0≤t≤LH H(t)/LH . Applying Fact 2.3 to the bounded functional

F : f 7→ 1l{sup0≤s≤1 f(s)<x} gives

P
( 1

ζZ
sup
t≥0

Z(t) < x
)

= 2E
[ 1

H(1)
1l{sup0≤s≤1H(s)<x}

]
≤ 2
[
E
(
H−3/2(1)

)]2/3 [
P
(

sup
0≤s≤1

H(s) < x
)]1/3

,
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by means of the Hölder inequality. Since by a Gaussian calculation, H−3/2(1) has finite

expectation, this yields (4.6) by using (2.8) (which, as was recalled in Section 2, goes back

to Ciesielski and Taylor [6]). The proof of (4.7) follows exactly from the same lines, using

(4.3) instead of (2.8). tu

Lemma 4.3. For any x > 0 and t > 0,

(4.8) P
(

sup
0≤s≤t

Z(s) > x
)
≤ c21 exp

(
−x− 2

9t

)
.

Proof. Recall that Z is a diffusion process, starting from 1, absorbed by 0, with generator

2xd2/dx2. Therefore, it can be realized as, for t < ζZ ,

√
Z(t) = 1 +W (t)− 1

2

∫ t

0

ds√
Z(s)

,

where W is the Wiener process. Hence
√
Z(t) ≤ 1 +W (t) for all t < ζZ . Accordingly,

P
(

sup
0≤s≤t

Z(s) > x, t < ζZ

)
≤ P

(
sup

0≤s≤t

(
1 +W (s)

)
> x1/2

)
= P

(
sup

0≤s≤t
W (s) > x1/2 − 1

)
≤ exp

(
− (x1/2 − 1)2

2t

)
,

by virtue of the usual Gaussian tail estimate. Since (x1/2 − 1)2 ≥ (x− 2)/2, this gives

(4.9) P
(

sup
0≤s≤t

Z(s) > x, t < ζZ

)
≤ exp

(
−x− 2

4t

)
.

On the other hand,

P
(

sup
0≤s≤t

Z(s) > x, t ≥ ζZ
)
≤ P

( 1

ζZ
sup
s≥0

Z(s) >
x

t

)
≤ c20 exp

(
− x

9t

)
,(4.10)

by means of (4.7). Combining (4.9) and (4.10) yields the lemma. tu

Remark 4.3.1. The constant 9 in Lemma 4.3 is clearly not the best possible. Moreover,

the lemma can also be proved by writing the probability in terms of the first hitting times

of Z and using the Laplace transform of it via Chernoff’s method (this Laplace transform
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has been computed by Ciesielski and Taylor [6]). This remark was suggested to us by an

anonymous referee.

Proof of Theorem 4.1. We choose a universal constant c22 such that

1

(18× 26) c22
≥ 5,(4.11)

c19

215 c22
≥ 7,(4.12)

where c19 is the absolute constant in (4.6).

We need a good maximal inequality, which bears some similarities with (3.12). To

this end, fix a small ε ∈ (0, 1), and define

rn
def
= rn(ε) = exp(n1−ε),

νn
def
=
√
c22 /(log log rn)3/2,

Ξn
def
= inf

{
t ≥ T (rn−1) : sup

x≤rn−νn
√
t

Lxt < sup
x≥rn−νn

√
t

Lxt + (rn − rn−1)
}
.

Observe that Ξn is again a stopping time. Define, on {Ξn <∞},

En =
{

sup
x≤rn−νn

√
Ξn

(LxT (rn) −LxΞn) < rn − rn−1

}
,

Fn =
{

sup
x≥rn−νn

√
T (rn)

LxT (rn) > sup
x≤rn−νn

√
T (rn)

LxT (rn) − 2(rn − rn−1)
}
.

Then {T (rn−1) < Ξn ≤ T (rn)}∩En is included in Fn (cf. the argument leading to (3.10)).

If T (rn−1) < Ξn < ∞, we have W (Ξn) ≥ rn − νn
√

Ξn, which yields that, on

{T (rn−1) < Ξn ≤ T (rn)},

En ⊃
{

sup
x≤W(Ξn)

(LxT (rn) − LxΞn) < rn − rn−1

}
.

By considering the new Wiener process {W (t+ Ξn)−W (Ξn); t ≥ 0}, we arrive at:

P(Fn) ≥ E
[
1l{T (rn−1)<Ξn≤T (rn)} P

(
sup
x≤0

Lx
T (νn

√
a ) < rn − rn−1

)
a=Ξn

]
.

By scaling and (3.8), we have

P(Fn) ≥ E
[
1l{T (rn−1)<Ξn≤T (rn)} c7

rn − rn−1

νn
√

Ξn
1l{
√

Ξn>(rn−rn−1)/νn}

]
≥ c7 E

[
1l{T (rn−1)<Ξn≤T (rn)}

rn − rn−1

νn
√

Ξn

]
− c7 E

( rn − rn−1

νn
√
T (rn−1)

1l{
√
T (rn−1)≤(rn−rn−1)/νn}

)
def
= Λ6(n)− Λ7(n),
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with obvious notation. Applying the Cauchy–Schwarz inequality and (4.4) leads to:

Λ7(n) ≤ c7
rn − rn−1

νn

[
E
( 1

T (rn−1)

)
P
(√

T (rn−1) ≤ rn − rn−1

νn

) ]1/2
≤ c7

rn − rn−1

νn

[ 1

r2
n−1

exp
(
− (νn rn−1)2

2(rn − rn−1)2

) ]1/2
≤ exp(−nε).(4.13)

On the other hand,

Λ6(n) ≥ c7
rn − rn−1

νn rn n1+ε
P
(
T (rn−1) < Ξn ≤ T (rn) ≤ r2

nn
2+2ε

)
≥ n−(1+3ε)

[
P
(
T (rn−1) < Ξn ≤ T (rn)

)
− P

(
T (rn) > r2

nn
2+2ε

)]
≥ n−(1+3ε)

[
P
(
T (rn−1) < Ξn ≤ T (rn)

)
− n−(1+ε)

]
.(4.14)

(We have used (4.5) in the last inequality). Since P(Fn) ≥ Λ6(n)−Λ7(n), combining (4.13)

and (4.14) implies

P
(
T (rn−1) < Ξn ≤ T (rn)

)
≤ n−(1+ε) + n1+3ε

(
exp(−nε) + P(Fn)

)
.

Assume we could show ∑
n

P
(

Ξn = T (rn−1)
)
<∞,(4.15) ∑

n

n1+3ε P(Fn) <∞.(4.16)

Then we would have
∑

n P(T (rn−1) ≤ Ξn ≤ T (rn)) < ∞, which, according to the Borel–

Cantelli lemma, would imply that almost surely for all large n and all t ∈ [T (rn−1), T (rn)],

sup
x≤rn−νn

√
t

Lxt ≥ sup
x≥rn−νn

√
t

Lxt + (rn − rn−1).

Since for t ∈ [T (rn−1), T (rn)],

rn − rn−1 ≥
rn

(log rn)2ε
≥ W (t)

(logW (t))2ε
≥ t1/2

(log t)1+3ε
,

(using (3.6)), and since by (3.7),

rn − νn
√
t ≤ rn−1 −

1

2
νn
√
t ≤W (t)−

√
c22

3(log log t)3/2
t1/2,
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this would yield Theorem 4.1.

It remains to check (4.15) and (4.16). By definition, P(Ξn = T (rn−1)) equals

P
(

sup
x≥rn−νn

√
T (rn−1)

LxT (rn−1) ≥ sup
x≤rn−νn

√
T (rn−1)

LxT (rn−1) − (rn − rn−1)
)
,

which, in light of the scaling property, is smaller than P(Fn). Therefore, we only have to

prove (4.16).

Observe that by scaling,

P(Fn) = P
(

sup
0≤t≤νn

√
T (1)

L1−t
T (1) ≥ sup

t≥νn
√
T (1)

L1−t
T (1) −

2(rn − rn−1)

rn

)
≤ P

(
sup

0≤t≤νn
√
T (1)

L1−t
T (1) > sup

t≥νn
√
T (1)

L1−t
T (1) −

2

nε

)
.

Since T (1) =
∫∞

0
L1−t
T (1) dt, by distinguishing two possible situations νn

√
T (1) > 1 and

νn
√
T (1) ≤ 1, the Ray–Knight theorem (cf. Fact 2.1) confirms that the probability term

on the right hand side

= P
(
Xn ≤ 1; sup

0≤t≤Xn
Q(t) > sup

Xn≤t≤1
Q(t) ∨Q(1) sup

t≥0
Z(t)− 2

nε

)
+ P

(
Xn > 1; sup

0≤t≤1
Q(t) ∨Q(1) sup

0≤t≤(Xn−1)/Q(1)

Z(t)

> Q(1) sup
t≥(Xn−1)/Q(1)

Z(t)− 2

nε

)
def
= Λ8(n) + Λ9(n),

with the notation

Xn
def
= νn

(∫ 1

0

Q(t) dt+Q2(1)

∫ ∞
0

Z(t) dt
)1/2

,

where, as before (cf. (2.2) and (2.4)), Q is a 2-dimensional squared Bessel process starting

from 0, and Z is a squared Bessel process of dimension 0 starting from 1 (the processes Q

and Z being independent). For our needs later, we insist that

(4.17) Xn
law
= νn

√
T (1).

The proof of (4.16) (hence of Theorem 4.1) will be complete once we prove the following

lemma. tu
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Lemma 4.4. We have, ∑
n

n1+3ε Λ8(n) <∞,(4.18) ∑
n

n1+3ε Λ9(n) <∞.(4.19)

The proof of Lemma 4.4 is divided into two parts, namely, the two estimates (4.18)

and (4.19) are established separately.

Proof of (4.18). Let

(4.20) N = N(n)
def
= 26 (log n)2.

For brevity, we write, for 0 < s < t <∞ and 0 < x < y ≤ ∞,

Q(t)
def
= sup

0≤u≤t
Q(u), Q(s, t)

def
= sup

s≤u≤t
Q(u),(4.21)

Z(y)
def
= sup

0≤u≤y
Z(u), Z(x, y)

def
= sup

x≤u≤y
Z(u).(4.22)

Observe that

Λ8(n) ≤
N∑
k=1

P
( k − 1

N
< Xn ≤

k

N
, Q
( k
N

)
> Q

( k
N
, 1
)
∨Q(1)Z(∞)− 2

nε

)
def
=

N∑
k=1

Λ10(n, k).(4.23)

By the definition of Xn,

Λ10(n, k) ≤ P
(
Q(1) +Q2(1) ζZ Z(∞) >

(k − 1)2

ν2
nN

2
,

Q
( k
N

)
> Q

( k
N
, 1
)
∨Q(1)Z(∞)− 2

nε

)
,

where, as before, ζZ denotes the life-time of Z. Applying Lemma 3.3 to a = 1/N and

b = 2/nε gives (recalling that j0 > 2):

Λ10(n, 1) ≤ P
(
Q
( 1

N

)
> Q

( 1

N
, 1
)
− 2

nε

)
≤ c8N exp

(
−j0
√
N − 1

)
≤ n−4.(4.24)
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On the other hand, for 2 ≤ k ≤ N ,

Λ10(n, k) ≤ P
(
Q(1) ≥ (k − 1)2

2ν2
nN

2
, Q
( k
N

)
> Q

( k
N
, 1
)
− 2

nε

)
+ P

(
Q2(1) ζZ Z(∞) ≥ (k − 1)2

2ν2
nN

2
, Q(1)Z(∞) < Q

( k
N

)
+

2

nε

)
def
= Λ11(n, k) + Λ12(n, k).

We have, for 2 ≤ k ≤ N ,

Λ11(n, k) ≤ P
(
Q
( k
N

)
≥ (k − 1)2

2ν2
nN

2
− 2

nε

)
≤ P

(
Q
( k
N

)
≥ (k − 1)2

3ν2
nN

2

)
≤ c16 exp

(
− (k − 1)2

9kν2
nN

)
,

by virtue of (4.2). Noting (k − 1)2/k ≥ 1/2 and in light of (4.11), we obtain:

(4.25) max
2≤k≤N

Λ11(n, k) ≤ n−4.

To estimate Λ12(n, k), note that for all 2 ≤ k ≤ N ,

Λ12(n, k) ≤ P
( 1

ζZ
Z(∞) <

2ν2
nN

2

(k − 1)2

(
Q
( k
N

)
+

2

nε

)2 )
≤ P

(
Q
( k
N

)
>

25 (k − 1)

N
log n− 2

nε

)
+ P

( 1

ζZ
sup
t≥0

Z(t) < 211 ν2
n (log n)2

)
def
= Λ13(n, k) + Λ14(n, k).

By (4.2), for 2 ≤ k ≤ N ,

Λ13(n, k) ≤ P
(
Q
( k
N

)
>

31(k − 1)

N
log n

)
≤ c16 exp

(
−31(k − 1)

3k
log n

)
≤ c16 exp

(
−31

6
log n

)
≤ n−4,
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whereas by Lemma 4.2 and (4.12),

Λ14(n, k) ≤ c18 exp
(
− c19

211 ν2
n (log n)2

)
≤ n−4.

Therefore, for all sufficiently large n,

(4.26) max
2≤k≤N

Λ12(n, k) ≤ 2n−4.

Since Λ10(n, k) ≤ Λ11(n, k) + Λ12(n, k) for all 2 ≤ k ≤ N , assembling (4.24)–(4.26) yields

N∑
k=1

Λ10(n, k) ≤ 2N n−4 ≤ n−3,

which, in view of (4.23), completes the proof of (4.18). tu

Proof of (4.19). Let N , Q and Z be as in (4.20)–(4.22). We have,

Λ9(n) ≤ P
(
Xn > n3νn

)
+

[n3νnN ]∑
k=1

P
( k − 1

N
+ 1 < Xn ≤

k

N
+ 1,

Q(1) ∨Q(1)Z
( k

Q(1)N

)
> Q(1)Z

( k

Q(1)N
,∞
)
− 2

nε

)
def
= P

(
Xn > n3νn

)
+

[n3νnN ]∑
k=1

Λ15(n, k).(4.27)

Clearly,

Λ15(n, k) ≤ P
(
Q(1) +Q2(1) ζZ Z(∞) >

(N + k − 1)2

ν2
nN

2
,

Q(1) ∨Q(1)Z
( k

Q(1)N

)
> Q(1)Z

( k

Q(1)N
,∞
)
− 2

nε

)
≤ Λ16(n, k) + Λ17(n, k) + Λ18(n, k) + Λ19(n, k),(4.28)
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where

Λ16(n, k)
def
= P

(
Q(1) >

(N + k − 1)2

2ν2
nN

2

)
,

Λ17(n, k)
def
= P

(
Q(1) >

N + k − 1

logn

)
,

Λ18(n, k)
def
= P

(
Q2(1) ζZ Z(∞) >

(N + k − 1)2

2ν2
nN

2
,

Z
( k

Q(1)N
,∞
)
< Z

( k

Q(1)N

)
+

2

nε

)
,

Λ19(n, k)
def
= P

(
Q2(1) ζZ Z(∞) >

(N + k − 1)2

2ν2
nN

2
,

N + k − 1

log n
≥ Q(1) ≥ Q(1)Z

( k

Q(1)N

)
,

Q(1) > Q(1)Z
( k

Q(1)N
,∞
)
− 2

nε

)
.

It is easy to estimate Λ16(n, k) and Λ17(n, k). Indeed, by (4.2),

Λ16(n, k) ≤ c16 exp
(
− (N + k − 1)2

6ν2
nN

2

)
≤ c16 exp

(
− 1

6ν2
n

)
,

Λ17(n, k) ≤ c16 exp
(
−N + k − 1

3 log n

)
≤ c16 exp

(
− N

3 log n

)
.

In view of (4.11), we have

[n3νnN ]∑
k=1

Λ16(n, k) ≤ n−3,(4.29)

[n3νnN ]∑
k=1

Λ17(n, k) ≤ n−3.(4.30)

To estimate Λ18(n, k), note that

Λ18(n, k) ≤ P
(
Z
( k

Q(1)N

)
>
N + k − 1

Q(1) log n
+ 2
)

+ P
(
Q2(1) ζZ Z(∞) >

(N + k − 1)2

2ν2
nN

2
,

Z(∞) <
N + k − 1

Q(1) log n
+ 2 +

2

nε

)
def
= Λ20(n, k) + Λ21(n, k).

Conditioning on Q(1) and using Lemma 4.3,

Λ20(n, k) ≤ c21 exp
(
−N(N + k − 1)

9k log n

)
≤ c21 exp

(
− N

9 log n

)
≤ n−7,
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whereas

Λ21(n, k) ≤ P
(
Q2(1) ζZ Z(∞) >

(N + k − 1)2

2ν2
nN

2
, Z(∞) <

2(N + k − 1)

Q(1) log n

)
+ P

(N + k − 1

Q(1) log n
< 3
)

≤ P
( Z(∞)

ζZ
<

8ν2
nN

2

(log n)2

)
+ P
(
Q(1) >

N

3 log n

)
≤ c18 exp

(
−c19 (log n)2

8ν2
nN

2

)
+ c16 exp

(
− N

9 logn

)
,

the last inequality following from (4.6) and (4.2). Together with (4.12), we obtain:

(4.31)

[n3νnN ]∑
k=1

Λ18(n, k) ≤ n−3.

Finally, to estimate Λ19(n, k), note that

Λ19(n, k) ≤ P
(
Q2(1) ζZ Z(∞) >

(N + k − 1)2

2ν2
nN

2
,

Q(1)Z(∞) ≤ N + k − 1

log n
+

2

nε

)
≤ P

( Z(∞)

ζZ
<

2ν2
nN

2

(N + k − 1)2

(N + k − 1

log n
+

2

nε

)2 )
≤ P

( Z(∞)

ζZ
<

3ν2
nN

2

(log n)2

)
,

which, according to Lemma 4.2, is ≤ c18 exp(−c19 (log n)2/3ν2
nN

2). Recalling (4.12), this

leads to the following estimate:

(4.32)

[n3νnN ]∑
k=1

Λ19(n, k) ≤ n−3.

Assembling (4.27)–(4.32) gives

Λ9(n) ≤ P
(
Xn > n3νn

)
+ 4n−3.

By (4.17) and (4.5), we have P(Xn > n3νn) ≤ n−3, which completes the proof of (4.19). tu
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5. Large favourite sites of the Wiener process

The problem of favourite sites can be posed for the Wiener process W as well. Let

Lxt be the jointly continuous local time process of W , and we can define the set of the

favourite sites of W :

V(t)
def
=
{
x ∈ R : Lxt = sup

y∈R
Lyt

}
.

It is known (cf. Leuridan [19], Eisenbaum [11]) that almost surely for all t > 0, V(t) is

either a singleton or composed of two points. Let us choose

V (t)
def
= max

x∈V(t)
x,

the (largest) favourite site. Our Theorems 3.1 and 4.1 and a 0-1 argument (see Remark

5.1.1) imply the following analogues of Theorems 1.1 and 1.2 for the Wiener process. Recall

that W (t)
def
= sup0≤s≤tW (s).

Theorem 5.1. There exists a universal constant c0 ∈ (0,∞) such that

lim inf
t→∞

(log log t)3/2

t1/2

(
W (t)− V (t)

)
= c0, a.s.

Remark 5.1.1. Similarly to the case of favourite site of the random walk, one can

easily see that a 0–1 law applies also for V (t). Indeed, Bass and Griffin [2] proved that

limt→∞ |V (t)|(log t)12t−1/2 =∞ a.s., so V (t) depends on large values of the Wiener process

W and hence the initial portion {W (s), 0 ≤ s ≤ log t} has no influence on V (t). It follows

that the lim inf in Theorem 5.1 should be a constant. We believe that c0 must be identical

with c0 of Theorem 1.1 but due to lack of strong invariance principle between U and V we

can not prove it.

Theorem 5.2. Almost surely,

lim inf
t→∞

(log log t)2 W (t)− V (t)

W (t)
= j2

0,

where j0 is the smallest positive root of the Bessel function J0(·).
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dérive. Prépublication du Laboratoire de Probabilités No. 395, Université Paris VI,
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