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On the birth-and-assassination process, with an

application to scotching a rumor in a network

Abstract

We give new formulas on the total number of born particles in the stable birth-and-assassination

process, and prove that it has a heavy-tailed distribution. We also establish that this process is

a scaling limit of a process of rumor scotching in a network, and is related to a predator-prey

dynamics.
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1 Introduction

Birth-and-assassination process

The birth-and-assassination process was introduced by Aldous and Krebs [2], it is a variant of the

branching process. The original motivation of the authors was then to analyze a scaling limit of a

queueing process with blocking which appeared in database processing, see Tsitsiklis, Papadimitriou

and Humblet [14]. In this paper, we show that the birth-and-assassination process exhibits some

heavy-tailed distribution. For general references on heavy-tail distribution in queueing processes,

see for example Mitzenmacher [9] or Resnick [12]. In this paper, we will not discuss this application.

Instead, we will show that the birth-and-assassination process is also the scaling limit of a rumor

spreading model which is motivated by network epidemics and dynamic data dissemination (see for

example, [10], [4], [11]).

Figure 1: Illustration of the birth-and-assassination process, living particles are in red, dead particles

in blue, particles at risk are encircled.

We now reproduce the formal definition of the birth-and-assassination process from [2]. Let N f =

∪∞
k=0
N

k be the set of finite k-tuples of positive integers (with N0 = ;). Let {Φn},n ∈ N f , be a family

of independent Poisson processes with common arrival rate λ. Let {Kn},n ∈ N f , be a family of

independent, identically distributed (iid), strictly positive random variables. Suppose the families

{Φn} and {Kn} are independent. The particle system starts at time 0 with only the ancestor particle,

indexed by ;. This particle produces offspring at the arrival times of Φ;, which enter the system

with indices (1), (2), · · · according to their birth order. Each new particle n entering the system

immediately begins producing offspring at the arrival times of {Φn}, the offspring of n are indexed

(n, 1), (n, 2), · · · also according to birth order. The ancestor particle is at risk at time 0. It continues

to produce offspring until time D; = K;, when it dies. Let k > 0 and let n = (n1, · · · , nk−1, nk),

n′ = (n1, ..., nk−1). When a particle n′ dies (at time Dn′), n then becomes at risk; it continues to

produce offspring until time Dn = Dn′+Kn, when it dies. We will say that the birth-and-assassination

process is stable if with probability 1 there exists some time t < ∞ with no living particle. The

process is unstable if it is not stable. Aldous and Krebs [2] proved the following:
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Theorem 1 (Aldous and Krebs). Consider a birth-and-assassination process with offspring rate λ

whose killing distribution has moment generating function φ. Suppose φ is finite in some neighborhood

of 0. If minu>0λu−1φ(u) < 1 then the process is stable. If minu>0λu−1φ(u) > 1 then the process is

unstable.

The birth-and-assassination process is a variant the classical branching process. Indeed, if instead

the particle n is at risk not when its parent dies but when the particle n was born, then we obtain a

well-studied type of branching process, refer to Athreya and Ney [5]. The populations in successive

generations behave as the simple Galton-Walton branching process with mean offspring equal to

λEK;, and so the process is stable if this mean is less than 1. The birth-and-assassination process is

a variation in which the ’clock’ which counts down the time until a particle’s death does not start

ticking until the particle’s parent dies.

In this paper, we will pay attention to the special case where the killing distribution is an exponen-

tial distribution with intensity µ. By a straightforward scaling argument, a birth-and-assassination

process with intensities (λ,µ) and a birth-and-assassination process with intensities (λµ−1, 1) where

the time is accelerated by a factor µ have the same distribution. Therefore, without loss of general-

ity, from now on, we will consider B , a birth-and-assassination process with intensities (λ, 1). As a

corollary of Theorem 1, we get

Corollary 1 (Aldous and Krebs). If 0< λ < 1/4, the processB is stable. If λ > 1/4, the processB is

unstable.

In the first part of this paper, we study the behavior of the processB in the stable regime, especially

as λ get close to 1/4. We introduce a family of probability measures {Pλ},λ > 0, on our underlying

probability space such that under Pλ, B is a birth-and-assassination process with intensities (λ, 1).

Let λ ∈ (0,1/4), we define N as the total number of born particles in B (including the ancestor

particle) and

γ(λ) = sup
�

u≥ 0 : EλNu <∞
	

.

In particular, if 0 < γ(λ) <∞, from Markov Inequality, for all 0 < ε < γ(λ), there exists a constant

C ≥ 1 such that for all t ≥ 1,

Pλ(N > t)≤ C t−γ(λ)+ε.

The number γ may thus be interpreted as a power tail exponent. There is a simple expression for γ.

Theorem 2. For all λ ∈ (0,1/4),

γ(λ) =
1+
p

1− 4λ

1−
p

1− 4λ
.

This result contrasts with the behavior of the classical branching process, where for all λ < 1:

there exists a constant c > 0 such that Eλ exp(cN) <∞. This heavy tail behavior of the birth-and-

assassination process is thus a striking feature of this process. Near criticality, as λ ↑ 1/4, we get

γ(λ)∼ 1, whereas as λ ↓ 0, we find γ(λ)∼ (2λ)−1. By recursion, we will also compute the moments

of N .

Theorem 3. (i) For all p ≥ 2, EλN p <∞ if and only if λ ∈ (0, p(p+ 1)−2).

(ii) If λ ∈ (0,1/4],

EλN =
2

1+
p

1− 4λ
. (1)
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(iii) If λ ∈ (0,2/9),

EλN2 =
2

3
p

1− 4λ− 1
. (2)

Theorem 3(i) is consistent with Theorem 2: λ ∈ (0, p(p + 1)−2) is equivalent to p ∈ [1, (1 +p
1− 4λ)(1 −

p
1− 4λ)−1) . Theorem 3(ii) implies a surprising discontinuity of the function

λ 7→ EλN at the critical intensity λ = 1/4: limλ↑1/4 EλN = 2. Again, this discontinuity contrasts

with what happens in a standard Galton-Watson process near criticality, where for 0 < λ < 1,

EλN = (1−λ)−1. We will prove also that this discontinuity is specific to λ = 1/4 and for all p ≥ 2,

limλ↑p(p+1)−2 Eλ[N
p] =∞. We will explain a method to compute all integers moments of N by re-

cursion. The third moment has already a complicated expression (see §2.5.1). From Theorem 3(ii),

we may fill the gap in Corollary 1.

Corollary 2. If λ= 1/4, the processB is stable.

In Section 2, we will prove Theorems 2 and 3 by exhibiting a Recursive Distributional Equation

(RDE) for a random variable related to N . Unfortunately, our method does not give much insights

on the heavy-tail phenomena involved in the birth-and-assassination process.

Rumor scotching process

We now define the rumor scotching process on a graph. It is a nonstandard SIR dynamics (see

for example [10] or [4] for some background). This process represents the dynamics of a ru-

mor/epidemic spreading on the vertices of a graph along its edges. A vertex may be unaware of

the rumor/susceptible (S), aware of the rumor and spreading it as true/infected (I), or aware of the

rumor and trying to scotch it/recovered (R).

More formally, we fix a connected graph G = (V, E), and let PV denote the set of subsets of V

and X = (PV × {S, I ,R})V . The spread of the rumor is described by a Markov process on X . For

X = (X v)v∈V ∈ X , with X v = (Av , sv), Av is interpreted as the set of neighbors of v which can change

the opinion of v on the veracity of the rumor. If (uv) ∈ E, we define the operations Euv and Ev on

X by (X + Euv)w = (X − Ev)w = Xw , if w 6= v and (X + Euv)v = (Av ∪ {u}, I), (X − Ev)v = (;,R). Let

λ > 0 be a fixed intensity, the rumor scotching process is the Markov process with generator:

K(X , X + Euv) = λ1(su = I)1((u, v) ∈ E)1(sv 6= R),

K(X , X − Ev) = 1(sv = I)
∑

u∈Av

1(su = R),

and all other transitions have rate 0. Typically, at time 0, there is non-empty finite set of I -vertices

and there is a vertex v such that Av contains a R-vertex. The absorbing states of this process are the

states without I -vertices. The case when at time 0, Av is the set to all neighbors of v is interesting in

its own (there, Av does not evolve before sv = R).

If G is the infinite k-ary tree this process has been analyzed by Kordzakhia [7] and it was defined

there as the chase-escape model. It is thought as a predator-prey dynamics: each vertex may be un-

occupied (S), occupied by a prey (I) or occupied by a predator (R). The preys spread on unoccupied

vertices and predators spread on vertices occupied by preys. If G is the Zd -lattice and if there is

no R-vertices, the process is the original Richardson’s model [13]. With R-vertices, this process is a
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variant of the two-species Richardson model with prey and predators, see for example Häggström

and Pemantle [6], Kordzakhia and Lalley [8]. Nothing is apparently known on this process.

In Section 3, we show that the birth-and-assassination process is the scaling limit, as n goes to infin-

ity, of the rumor scotching process when G is the complete graph over n vertices and the intensity is

λ/n (Theorem 4).

2 Integral equations for the birth-and-assassination process

2.1 Proof of Theorem 3 for the first moment

In this paragraph, we prove Theorem 3(ii). Let X (t) ∈ [0,+∞] be the total number of born particles

in the processB given that the root cannot die before time t, and Y (t) be the total number of born

particles given that the root dies at time t. By definition, if D is an exponential variable with mean

1 independent of Y , then N
d
= X (0)

d
= Y (D), where the symbol

d
= stands for distributional equality.

We notice also that the memoryless property of the exponential variable implies X (t)
d
= Y (t + D).

The recursive structure of the birth-and-assassination process leads to the following equality in

distribution

Y (t)
d
= 1+

∑

i:ξi≤t

X i(t − ξi)
d
= 1+

∑

i:ξi≤t

X i(ξi),

where Φ = {ξi}i∈N is a Poisson point process of intensity λ and (X i), i ∈ N, are independent copies

of X . Note that since all variables are non-negative, there is no issue with the case Y (t) = +∞. We

obtain the following RDE for the random function Y :

Y (t)
d
= 1+

∑

i:ξi≤t

Yi(ξi + Di), (3)

where Yi , and Di are independent copies of Y and D respectively. This last RDE is the cornerstone

of this work.

Assuming that EλN <∞ we first prove that necessarily λ ∈ (0,1/4). For convenience, we often drop

the parameter λ in Eλ and other objects depending on λ. From Fubini’s theorem, EX (0) = EN =
∫∞

0
EY (t)e−t d t and therefore EY (t) <∞ for almost all t ≥ 0. Note however that since t 7→ Y (t) is

monotone for the stochastic domination, it implies that EY (t)<∞ for all t > 0. The same argument

gives the next lemma.

Lemma 1. Let t > 0 and u> 0, if E[Nu]<∞ then E[Y (t)u]<∞.

Now, taking expectation in (3), we get

EY (t) = 1+λ

∫ t

0

∫ ∞

0

EY (x + s)e−sdsd x .

Let f1(t) = EY (t), it satisfies the integral equation, for all t ≥ 0,

f1(t) = 1+λ

∫ t

0

ex

∫ ∞

x

f1(s)e
−sdsd x . (4)
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Taking the derivative once and multiplying by e−t , we get: f ′1(t)e
−t = λ

∫∞
t

f1(s)e
−sds. Then, taking

the derivative a second time and multiplying by et : f ′′1 (t)− f ′1(t) = −λ f1(t). So, finally, f1 solves a

linear ordinary differential equation of the second order

x ′′− x ′+λx = 0, (5)

with initial condition x(0) = 1. If λ > 1/4 the solutions of (5) are

x(t) = et/2(cos(t
p

4λ− 1) + a sin(t
p

4λ− 1)),

for some constant a. Since f1(t) is necessarily positive, this leads to a contradiction and EN =∞.

Assume now that 0< λ < 1/4 and let

∆=
p

1− 4λ , α=
1−∆

2
and β =

1+∆

2
. (6)

(α,β) are the roots of the polynomial X 2− X +λ= 0. The solutions of (5) are

xa(t) = (1− a)eαt + aeβ t

for some constant a. Whereas, for λ= 1/4, α= 1/2 and the solutions of (5) are

xa(t) = (at + 1)et/2.

For 0 < λ ≤ 1/4, we check easily that the functions xa with a ≥ 0 are the nonnegative solutions of

the integral equation (4).

It remains to prove that if 0 < λ ≤ 1/4 then EN < ∞ and f1(t) = eαt . Indeed, then EN =
∫∞

0
f1(t)e

−t d t = (1−α)−1 as stated in Theorem 3(ii). To this end, define f
(n)

1 (t) = Emin(Y (t), n),

from (3),

min(Y (t), n)≤st 1+
∑

i:ξi≤t

min(Yi(ξi + Di), n).

Taking expectation, we obtain, for all t ≥ 0,

f
(n)

1 (t)≤ 1+λ

∫ t

0

ex

∫ ∞

x

f
(n)

1 (s)e−sdsd x . (7)

We now state a lemma which will be used multiple times in this paper. We define

γ(λ) = (1+∆)/(1−∆) = β/α. (8)

Let 1 < u < γ (or equivalently λ < u(u + 1)−2), we define Hu, the set of measurable functions

h : [0,∞)→ [0,∞) such that h is non-decreasing and supt≥0 h(t)e−uαt <∞. Let C > 0, we define

the mapping fromHu toHu,

Ψ : h 7→ Ceuαt +λ

∫ t

0

ex

∫ ∞

x

h(s)e−sdsd x .

In order to check that Ψ is indeed a mapping fromHu toHu, we use the fact that if 1< u< γ, then

uα < 1. Note also that if 1< u< γ, then uα−λ−u2α2 > 0. If λ= 1/4, we also define the mapping

fromH1 toH1,

Φ : h 7→ 1+
1

4

∫ t

0

ex

∫ ∞

x

h(s)e−sdsd x .

(recall that for λ= 1/4, α= 1/2).
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Lemma 2. (i) Let 1< u< γ and f ∈Hu such that f ≤Ψ( f ). Then for all t ≥ 0,

f (t)≤ C
uα(1− uα)

uα−λ− u2α2
euαt − C

λ

uα−λ− u2α2
eαt .

(ii) If λ= 1/4 and f ∈H1 is such that f ≤ Φ( f ), then for all t ≥ 0,

f (t)≤ et/2.

Before proving Lemma 2, we conclude the proof of Theorem 3(ii). For 0 < λ < 1/4, from (7), we

may apply Lemma 2(i) applied to 1< u< β/α, C = 1. We get that

f
(n)

1 (t)≤ Cueαut

for some Cu > 0. The monotone convergence theorem implies that f1(t) = limn→∞ f
(n)

1 (t) exists

and is bounded by Cueαut . Therefore f1 solves the integral equation (4) and is equal to xa for some

a ≥ 0. From what precedes, we get xa(t) ≤ Cueαut , however, since αu < β , the only possibility is

a = 0 and f1(t) = eαt .

Similarly, if λ = 1/4, from Lemma 2(ii), f1(t) ≤ et/2. This proves that f1 is finite, and we thus have

f1 = xa for some a ≥ 0. Again, the only possibility is a = 0 since xa(t)≤ et/2 implies a = 0.

Proof of Lemma 2. (i). The fixed points of the mapping Ψ are the functions ha,b such that

ha,b(t) = aeαt + beβ t + C
uα(1− uα)

uα−λ− u2α2
euαt ,

with a+b+C
uα(1−uα)

uα−λ−u2α2 = C . The only fixed point inHu is h∗ := ha∗,0 with a∗ =−Cλ/(uα−λ−u2α2).

Let Cu denote the set of continuous functions in Hu, note that Ψ is also a mapping from Cu to Cu.

Now let g0 ∈ Cu and for k ≥ 1, gk = Ψ(gk−1). We first prove that for all t ≥ 0 , limk gk(t) = h∗(t).

If 1 < u < γ then uα(1− uα) > λ and
uα(1−uα)

uα−λ−u2α2 is positive. We deduce easily that if g0(t) ≤ Leuαt

then g1(t) = Ψ(g)(t)≤ Ceuαt + Lλ

uα(1−uα)
(euαt −1)≤ L1euαt , with L1 = (C+

Lλ

uα(1−uα)
). By recursion,

we obtain that lim supk gk(t) ≤ L∞euαt , with L∞ = Cuα(1 − uα)/(uα − λ − u2α2) < ∞. From

Arzela-Ascoli’s theorem, (gk)k∈N is relatively compact in Cu and any accumulation point converges

to h∗ (since h∗ is the only fixed point of Ψ in Cu).

Now since f ∈ Hu, there exists a constant L > 0 such that for all t ≥ 0, f (t) ≤ g0(t) := Leuαt . The

monotonicity of the mapping Ψ implies that Ψ( f ) ≤ Ψ(g0) = g1. By assumption, f ≤ Ψ( f ) thus by

recursion f ≤ limn gn = h∗.

(ii). The function x0(t) = et/2 is the only fixed point of Φ inH1. Moreover, if g(t)≤ Cet/2 then we

also have Φ(g)(t)≤ Ce t/2. Then, if g is continuous, arguing as above, from Arzela-Ascoli’s theorem,

(Φk(g))k∈N converges to x0. We conclude as in (i). �

2.2 Proof of Theorem 3(i)

We define fp(t) = Eλ[Y (t)
p]. As above, we often drop the parameter λ in Eλ and other objects

depending on λ.

Lemma 3. Let p ≥ 2, there exists a polynomial Qp with degree p such that for all t > 0,
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(i) If λ ∈ (0, p(p+ 1)−2), then fp(t) =Qp(e
αt).

(ii) If λ≥ p(p+ 1)−2, then fp(t) =∞,

Note that if such polynomial Qp exists then Qp(x)≥ 1 for all x ≥ 1. Note also that λ ∈ (0, p(p+1)−2)

implies that p < γ = β/α (where γ was defined by (8)), and thus pα < β < 1. Hence Lemma 3

implies Theorem 3(i) since E[N p] =
∫

fp(t)e
−t d t.

Let κp(X ) denote the pth cumulant of a random variable X whose moment generating function is

defined in a neighborhood of 0: ln EeθX =
∑

p≥0 κp(X )θ
p/p!. In particular κ0(X ) = 0, κ1(X ) = EX

and κ2(X ) = VarX . Using the exponential formula

Eexp
∑

ξi∈Φ
h(ξi , Zi) = exp(λ

∫ ∞

0

(Eeh(x ,Z)− 1)d x), (9)

valid for all non-negative function h and iid variables (Zi), i ∈ N, independent of Φ = {ξi}i∈N a

Poisson point process of intensity λ, we obtain that for all p ≥ 1,

κp







∑

i:ξi≤t

h(ξi, Zi)





 = λ

∫ t

0

Ehp(x , Z)d x . (10)

Due to this last formula, it will be easier to deal with the cumulant gp(t) = κp(Y (t)). By recursion,

we will prove the next lemma which implies Lemma 3.

Lemma 4. Let p ≥ 2, there exists a polynomial Rp with degree p, positive on [1,∞) such that, for all

t > 0,

(i) If λ ∈ (0, p(p+ 1)−2), then fp(t)<∞ and gp(t) = Rp(e
αt).

(ii) If λ≥ p(p+ 1)−2, then fp(t) =∞,

Proof of Lemma 4. In §2.1, we have computed fp for p = 1 and found R1(x) = x . Let p ≥ 2 and

assume now that the statement of the Lemma 4 holds for q = 1, · · · , p − 1. We assume first that

fp(t) <∞, we shall prove that necessarily λ ∈ (0, p(p+ 1)−2) and gp(t) = Rp(e
αt). Without loss of

generality we assume that 0 < λ < 1/4. From Fubini’s theorem, using the linearity of cumulants in

(3) and (10), we get

gp(t) = λ

∫ t

0

∫ ∞

0

E[Y (x + s)p]e−sdsd x

= λ

∫ t

0

ex

∫ ∞

x

fp(s)e
−sdsd x , (11)

(note that Fubini’s Theorem implies the existence of fp(s) for all s > 0). From Jensen inequality

fp(t) ≥ g1(t)
p = epαt and the integral

∫∞
x

epαse−sdsd x is finite if and only if pα < 1. We may thus

assume that pα < 1. We now recall the identity: EX p =
∑

π

∏

I∈π κ|I |(X ), where the sum is over all

set partitions of {1, · · · , p}, I ∈ π means I is one of the subsets into which the set is partitioned, and

|I | is the cardinal of I . This formula implies that EX p = κp(X ) + Σp−1(κ1(X ), · · · ,κp−1(X )), where
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Σp−1(x1, · · · , xp−1) is a polynomial in p− 1 variables with non-negative coefficients and each of its

monomial
∏k

ℓ=1 x
nℓ
iℓ

satisfies
∑

ℓ nℓiℓ = p. Using the recurence hypothesis, we deduce from (11)

that there exists a polynomial R̃p(x) =
∑p

k=1
rk xk of degree p with rp > 0 such that

gp(t) = λ

∫ t

0

ex

∫ ∞

x

�

gp(s)e
−s + R̃p(e

αs)e−s
�

dsd x

=

p
∑

k=1

λrk

kα(1− kα)
ekαt +λ

∫ t

0

ex

∫ ∞

x

gp(s)e
−sdsd x , (12)

(recall that pα < 1). Now we take the derivative of this last expression, multiply by e−t and take

the derivative again. We get that gp is a solution of the differential equation:

x ′′− x ′+λx =−
p
∑

k=1

λrkekαt , (13)

with initial condition x(0) = 0. Thus necessarily gp(t) = aeαt + beβ t + ϕ(t), where ϕ(t) is a

particular solution of the differential equation (13). Assume first that λ 6= p(p + 1)−2, then it is

easy to check that (p+ 1)λ− pα and p(p+ 1)−2 − λ are different from 0 and have the same sign.

Looking for a function ϕ of the form ϕ(t) =
∑p

k=1
ckekαt gives ck = −λrk(k

2α2 − kα + λ)−1 =

λrk(k−1)−1((k+ 1)λ− kα)−1. If λ > p(p+ 1)−2 then pα > β and the leading term in gp is cpepαt .

However, if λ > p(p + 1)−2, cp < 0 and thus gp(t) < 0 for t large enough. This is a contradiction

with Equation (11) which asserts that gp(t) is positive.

We now check that if 0 < λ < p(p+ 1)−2 then fp(t) is finite. We define f (n)p (t) = E[min(Y (t), n)p].

We use the following identity,

 

N
∑

i=1

yi

!p

=

N
∑

i=1

p−1
∑

k=0

�

p− 1

k

�

yk+1
i







N
∑

j 6=i

yi







p−k−1

.

Then from (3) we get,

(Y (t)− 1)p
d
= (14)

∑

ξi≤t

Yi(ξi + Di)
p +
∑

ξi≤t

p−2
∑

k=0

�

p− 1

k

�

Yi(ξi + Di)
k+1







∑

ξ j 6=ξi≤t

Yj(ξ j + D j)







p−k−1

.

The recursion hypothesis implies that there exists a constant C such that fk(t) = Qk(e
αt) ≤ Cekαt

for all 1≤ k ≤ p− 1. Thus, the identity Y (t)p = (Y (t)− 1)p −
∑p−1

k=0

�p

k

�

(−1)p−kY (t)k gives

f (n)p (t) ≤ E[min(Y (t)− 1, n)p] +

p−1
∑

k=0

�

p

k

�

Cekαt

≤ E[min(Y (t)− 1, n)p] + C1epαt .

From the recursion hypothesis, if 1≤ k ≤ p− 1,
∫ t

0

E[Y (x + D)k]d x =

∫ t

0

ex

∫ ∞

x

fk(s)e
−sdsd x = Q̃k(e

αt)≤ Cekαt
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for some constant C > 0. We take the expectation in (14) and use Slyvniak’s theorem to obtain

f (n)p (t) ≤ C1epαt +λ

∫ t

0

ex

∫ ∞

x

f (n)p (s)e
−sdsd x

+ λ

∫ t

0

p−2
∑

k=0

�

p− 1

k

�

E[Yi(x + Di)
k+1]E







� ∑

ξ j≤t

Yj(ξ j + D j)
�p−k−1





 d x

≤ C1epαt +λ

∫ t

0

ex

∫ ∞

x

f (n)p (s)e
−sdsd x

+ λ

p−2
∑

k=0

�

p− 1

k

�

Q̃k+1(e
αt)E[(Y (t)− 1)p−k−1]

≤ C2epαt +λ

∫ t

0

ex

∫ ∞

x

f (n)p (s)e
−sdsd x

So finally for a suitable choice of C ,

| f (n)p (t)≤ Cepαt +λ

∫ t

0

ex

∫ ∞

x

f (n)p (s)e
−sdsd x . (15)

From Lemma 2, f (n)p (t) ≤ C ′epαt , and, by the monotone convergence theorem, gp(t) ≤ fp(t) ≤
C ′epαt . From what precedes: gp(t) = aeαt + beβ t +ϕ(t), with ϕ(t) =

∑p

k=1
ckekαt , with cp > 0. If

b > 0, since λ > p(p+1)−2 then pα < β and the leading term in gp is beβ t which is in contradiction

with gp(t) ≤ C ′epαt . If b < 0, this is a contraction with Equation (11) which asserts that gp(t) is

positive. Therefore b = 0 and gp(t) = aeαt +ϕ(t) = Rp(e
αt).

It remains to check that if λ= p(p+1)−2 then for all t > 0, fp(t) =∞. We have proved that, for all

λ < p(p+1)−2, gp(t) = up(λ)(p−1)−1((p+1)λ−pα)−1epαt+Sp−1(e
αt), where Sp−1 is a polynomial

of degree at most p−1 and up(λ)> 0. Note that limλ↑p(p+1)−2(p+1)λ−pα= 0. A closer look at the

recursion shows also that up(λ) is a sum of products of terms in λ and λ(ℓ−1)−1((ℓ+1)λ− ℓα)−1,

with 2 ≤ ℓ ≤ p− 1. In particular, we deduce that limλ↑p(p+1)−2 up(λ) > 0. Similarly, the coefficients

of Sp−1 are equal to sums of products of integers and terms in λ and λ(ℓ− 1)−1((ℓ+ 1)λ− ℓα)−1,

with 2≤ ℓ≤ p− 1. Thus they stay bounded as λ goes to p(p+ 1)−2 and we obtain, for all t > 0,

lim inf
λ↑p(p+1)−2

fp(t)≥ lim
λ↑p(p+1)−2

gp(t) =∞. (16)

Now, for all t > 0, the random variable Y (t) is stochastically non-decreasing with λ. Therefore

Eλ[Y (t)
p] is non-decreasing and (16) implies that E1/4[Y (t)

p] =∞. The proof of the recursion is

complete.

�

2.3 Proof of Theorem 3(iii)

In this paragraph, we prove Theorem 3(iii). Let λ ∈ (0,2/9), recall that f2(t) = EY (t)2 and g2(t) =

Var(Y (t)). From (11) applied to p = 2,

g2(t) = λ

∫ t

0

∫ ∞

0

g2(x + s)e−s + f 2
1 (x + s)e−sdsd x .
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Since f1(t) = eαt and α2 = α−λ, g2 satisfies the integral equation:

g2(t) =
λ

2(2λ−α)
�

e2αt − 1
�

+λ

∫ t

0

ex

∫ ∞

x

g2(s)e
−sdsd x .

We deduce that g2 solves an ordinary differential equation:

x ′′− x ′+λx =−λe2αt ,

with initial condition x(0) = 0. Thus g2 is of the form: g2(t) = aeαt + beβ t + λ

3λ−2α
e2αt . with

a+ b+ λ

3λ−2α
= 0. From Lemma 4, b = 0 so finally

g2(t) =
λ

3λ− 2α

�

e2αt − eαt
�

and f2(t) = 2
2λ−α
3λ− 2α

e2αt −
λ

3λ− 2α
eαt .

We conclude by computing EN2 =
∫

e−t f2(t)d t.

2.4 Proof of Theorem 2

As usual we drop the parameter λ in Eλ. From (8), we have γ(λ) = 1−2λ+
p

1−4λ

2λ
. To prove Theorem

2, we shall prove two statements

If E[Nu]<∞ then u≤ γ, (17)

If 1≤ u< γ then E[Nu]<∞. (18)

2.4.1 Proof of (17).

Let u≥ 1, we assume that E[Nu]<∞. From Lemma 1 and (3), we get

E[Y (t)u] = E






1+

∑

i:ξi≤t

Yi(ξi + Di)







u

.

Let fu(t) = E[Y (t)u]. Taking expectation and using the inequality (x+ y)u ≥ xu+ yu, for all positive

x and y , we get:

fu(t) ≥ 1+λ

∫ t

0

E fu(x + D)d x

≥ 1+λ

∫ t

0

ex

∫ ∞

x

fu(s)e
−sdsd x . (19)

From Jensen’s Inequality, fu(t) ≥ f1(t)
u = euαt . Note that the integral

∫∞
x

eαuse−sds is finite if and

only if u < α−1. Suppose now that γ < u < α−1. We use the fact: if u > γ then u2α2 − uα+ λ > 0,

to deduce that there exists 0< ε < λ such that

u2α2− uα+λ > ε. (20)
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Let λ̃= λ− ε, α̃= α(λ̃), β̃ = β(λ̃), we may assume that ε is small enough to ensure also that

uα > β̃ . (21)

(Indeed, for all λ ∈ (0,1/4), α(λ)γ(λ) = β(λ) and the mapping λ 7→ β(λ) is obviously continuous).

We compute a lower bound from (19) as follows:

fu(t) ≥ 1+ λ̃

∫ t

0

ex

∫ ∞

x

fu(s)e
−sdsd x + ε

∫ t

0

ex

∫ ∞

x

fu(s)e
−sdsd x

≥ 1+ λ̃

∫ t

0

ex

∫ ∞

x

fu(s)e
−sdsd x + ε

∫ t

0

ex

∫ ∞

x

euαse−sdsd x

≥ 1+ C(euαt − 1) + λ̃

∫ t

0

ex

∫ ∞

x

fu(s)e
−sdsd x , (22)

with C = ε(uα(1 − uα))−1 > 0. We consider the mapping Ψ : h 7→ 1 + C(euαt − 1) +

λ̃
∫ t

0
ex
∫∞

x
h(s)e−sdsd x . Ψ is monotone: if for all t ≥ 0, h1(t) ≥ h2(t) then for all t ≥ 0,

Ψ(h1)(t) ≥ Ψ(h2)(t). Since, for all t ≥ 0, fu(t) ≥ Ψ( fu)(t) ≥ 1, we deduce by iteration that there

exists a function h such that h = Ψ(h) ≥ 1. Solving h = Ψ(h) is simple, taking twice the derivative,

we get, h′′ − h′ + λ̃h= −εepαt . Therefore, h= aeα̃t + beβ̃ t − ε(u2α2 − uα+ λ̃)−1euαt for some con-

stant a and b. From (21) the leading term as t goes to infinity is equal to −ε(u2α2−uα+ λ̃)−1euαt .

However from (20), −ε(u2α2 − uα+ λ̃)−1 < 0 and it contradicts the assumption that h(t) ≥ 1 for

all t ≥ 0. Therefore we have proved that u≤ γ.

2.4.2 Proof of (18).

Let f (n)u (t) = E[min(Y (t), n)u], we have the following lemma.

Lemma 5. There exists a constant C > 0 such that for all t ≥ 0:

f (n)u (t)≤ Ceuαt +λ

∫ t

0

ex

∫ ∞

x

f (n)u (s)e−sdsd x .

The statement (18) is a direct consequence of Lemmas 2 and 5. Indeed, note that f (n)u ≤ nu, thus by

Lemma 2, for all t ≥ 0, f (n)u (t) ≤ C1euαt for some positive constant C1 independent of n. From the

Monotone Convergence Theorem, we deduce that, for all t ≥ 0, fu(t) ≤ C1euαt . It remains to prove

Lemma 5.

Proof of Lemma 5. The lemma is already proved if u is an integer in (15). The general case is a slight

extension of the same argument. We write u = p − 1+ v with v ∈ (0,1) and p ∈ N∗. We use the

inequality, for all yi ≥ 0, 1≤ i ≤ N ,

 

N
∑

i=1

yi

!u

≤
N
∑

i=1

p−1
∑

k=0

�

p− 1

k

�

yk+v
i







N
∑

j 6=i

yi







p−k−1
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(which follows from the inequality (
∑

yi)
v ≤

∑

y v
i ). Then from (3) we get the stochastic domina-

tion

(Y (t)− 1)u ≤st

∑

ξi≤t

Yi(ξi + Di)
u

+
∑

ξi≤t

p−2
∑

k=0

�

p− 1

k

�

Yi(ξi + Di)
k+v







∑

ξ j 6=ξi≤t

Yj(ξ j + D j)







p−k−1

From Lemma 3, there exists C such that for all 1 ≤ k ≤ p − 1, fk(t) ≤ Cekαt and and
∫ t

0
E[Y (x + D)k]d x ≤ Cekαt . Note also, by Jensen inequality, that for all 1 ≤ k ≤ p − 2,

fk+v(t) ≤ fp−1(t)
(k+v)/(p−1) ≤ Ce(k+v)αt . The same argument (with p replaced by u) which led

to (15) in the proof of Lemma 4 leads to the result. �

2.5 Some comments on the birth-and-assassination process

2.5.1 Computation of higher moments

It is probably hard to derive an expression for all moments of N , even if in the proof of Lemma 4, we

have built an expression of the cumulants of Y (t) by recursion. However, exact formulas become

quickly very complicated. The third moment, computed by hand, gives

f3(t) = 3
3λ−α
4λ− 3α

e3αt − 6
λ(2λ−α)
(3λ− 2α)2

e2αt +

�

1+ 6
λ(2λ−α)
(3λ− 2α)2

− 3
3λ−α
4λ− 3α

�

eαt .

Since N
d
= Y (D), we obtain,

EN3 = 6
(3λ−α)α

(4λ− 3α)(1−α− 3λ)
− 6

λ(2λ−α)α
(3λ− 2α)2(1−α− 2λ)

+
1

1−α .

2.5.2 Integral equation of the Laplace transform

It is also possible to derive an integral equation for the Laplace transform of Y (t): Lθ (t) =

Eexp(−θY (t)), with θ > 0. Indeed, using RDE (3) and the exponential formula (9),

Lθ (t) = e−θ exp

�

λ

∫ t

0

(ELθ (x + D)− 1)d x

�

= e−θ exp

�

λ

∫ t

0

ex

∫ ∞

x

(Lθ (s)− 1)e−sdsd x

�

.

Taking twice the derivative, we deduce that, for all θ > 0, Lθ solves the differential equation:

x ′′x − x ′2− x ′x +λx2(x − 1) = 0.

We have not been able to use fruitfully this non-linear differential equation.
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2.5.3 Probability of extinction

If λ > 1/4 from Corollary 1, the probability of extinction of B is strictly less than 1. It would be

very interesting to have an asymptotic formula for this probability as λ get close to 1/4 and compare

it with the Galton-Watson process. To this end, we define π(t) as the probability of extinction ofB
given than the root cannot die before t. With the notation of Equation (3), π(t) satisfies

π(t) = E
∏

i:ξi≤t+D

π(t + D− ξi) = E
∏

i:ξi≤t+D

π(ξi),

Using the exponential formula (9), we find that the function π solves the integral equation:

π(t) = et

∫ ∞

t

exp

�

−(λ+ 1)s+λ

∫ s

o

π(x)d x

�

ds.

After a quick calculation, we deduce that π is solution of the second order non-linear differential

equation
x ′− x ′′

x − x ′
= λ(x − 1).

Unfortunately, we have not been able to get any result on the function π(t) from this differential

equation.

3 Rumor scotching in a complete network

3.1 Definition and result

0

1

Figure 2: The graph G6.

We consider the rumor scotching process on the graph Gn on {0, · · · , n} obtained by adding on the

complete graph on {1, · · · , n} the edge (0,1), see Figure 2. Let Pn be the set of subsets of {0, · · · , n}.
With the notation in introduction, the rumor scotching process on Gn is the Markov process on

Xn = (Pn× {S, I ,R})n with generator, for X = (Ai , si)0≤i≤n,

K(X , X + Ei j) = λn−11(si = I)1(s j 6= R),

K(X , X − E j) = 1(s j = I)

 

n
∑

i=1

1(i ∈ A j)

!

,
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and all other transitions have rate 0. At time 0, the initial state is X (0) = (X i(0))0≤i≤n with X0(0) =

(;,R), X1(0) = ({0}, I) and for i ≥ 2, X i(0) = (;,S).
With this initial condition, the process describes the propagation of a rumor started from vertex 1

at time 0. After an exponential time, vertex 1 learns that the rumor is false and starts to scotch the

rumor to the vertices it had previously informed. This process is a Markov process on a finite set

with as absorbing states, all states without I -vertices. We define Nn as the total number of recovered

vertices in {1, . . . , n} when the process stops evolving. We also define Yn(t) as the distribution Nn

given that vertex 1 is recovered at time t. We have the following

Theorem 4. (i) If 0 < λ ≤ 1/4 and t ≥ 0, as n goes to infinity, Nn and Yn(t) converge weakly

respectively to N and Y (t) in the birth-and-assassination process of intensity λ.

(ii) If λ > 1/4, there exists δ > 0 such that

lim inf
n

Pλ(Nn ≥ δn)> 0.

The proof of Theorem 4 relies on the convergence of the rumor scotching process to the birth-and-

assassination process, exactly as the classical SIR dynamics converges to a branching process as the

size of the population goes to infinity.

3.2 Proof of Theorem 4

3.2.1 Proof of Theorem 4(i)

The proof of Theorem 4 relies on an explicit contruction of the rumor scotching process. Let

(ξ
(n)

i j
), 1 ≤ i < j ≤ n, be a collection of independent exponential variables with parameter λn−1

and, for all 1 ≤ i ≤ j, let Di j be an independent exponential variable with parameter 1. We set

D ji = Di j and ξ
(n)

ji
= ξ

(n)

i j
. A network being a graph with marks attached on edges, we define Kn

as the network on the complete graph of {1, · · · , n} where the mark attached on the edge (i j) is the

pair (ξ
(n)

i j
, Di j). Now, the rumor scotching process is built on the network Kn by setting ξ

(n)

i j
as the

time for the infected particle i to infect the particle j and Di j as the time for the recovered particle i

to recover the particle j that it had previously infected.

The networkKn has a local weak limit as n goes to infinity (see Aldous and Steele [3] for a definition

of the local weak convergence). This limit network of Kn is K , the Poisson weighted infinite tree

(PWIT) which is described as follows. The root vertex, say ;, has an infinite number of children

indexed by integers. The marks associated to the edges from the root to the children are (ξi, Di)i≥1

where {ξi}i≥1 is the realization of a Poisson process of intensity λ on R+ and (Di)i≥1 is a sequence

of independent exponential variables with parameter 1. Now recursively, for each vertex i ≥ 1 we

associate an infinite number of children denoted by (i, 1), (i, 2), · · · and the marks on the edges from

i to its children are obtained from the realization of an independent Poisson process of intensity λ

on R+ and a sequence of independent exponential variables with parameter 1. This procedure is

continued for all generations. Theorem 4.1 in [3] implies the local weak convergence of Kn to K
(for a proof see Section 3 in Aldous [1]).

Now notice that the birth-and-assissination process is the rumor scotching process onK with initial

condition: all vertices susceptible apart from the root which is infected and will be restored after an

exponential time with mean 1.
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For s > 0 and ℓ ∈ N, let Kn[s,ℓ] be the network spanned by the set of vertices j ∈ {1, · · · , n} such

that there exists a sequence (i1, · · · , ik) with i1 = 1, ik = j, k ≤ ℓ and max(ξ
(n)

i1 i2
, · · · ,ξ(n)

ik−1 ik
) ≤ s.

If τn is the time elapsed before an absorbing state is reached, we get that 1(τn ≤ s)1(Nn ≤ ℓ) is

measurable with respect to Kn[s,ℓ]. From Theorem 4.1 in [3], we deduce that 1(τn ≤ s)1(Nn ≤ ℓ)
converges in distribution to 1(τ ≤ s)1(N ≤ ℓ) where τ is the time elapsed before all particles die

in the birth-and-assassination process. If 0 < λ < 1/4, τ is almost surely finite and we deduce the

statement (i).

3.2.2 Proof of Theorem 4(ii)

In order to prove part (ii) we couple the birth-and-assassination process and the rumor scotching

process. We use the above notation and build the rumor scotching process on the network Kn. If

X = ((Ai, si)0≤i≤n) ∈ Xn, we define I(X ) = {1≤ i ≤ n : si = I} and S(X ) = {1≤ i ≤ n : si = S}.
Let X = Xn(u) ∈ Xn be the state of the rumor scotching process at time u ≥ 0. Let i ∈ I(X ), we

reorder the variables (ξ
(n)

i j
) j∈S(X ) in non-decreasing order: ξ

(n)

i j1
≤ · · · ≤ ξ(n)

i j|S(X )|
. Define ξ

(n)

i j0
= 0,

from the memoryless property of the exponential variable, for 1 ≤ k ≤ |S(X )|, ξ(n)
i jk
− ξ(n)

i jk−1
is an

exponential variable with parameter λ(|S(X )| − k + 1)/n independent of (ξ
(n)

i jℓ
− ξ(n)

i jℓ−1
, ℓ < k).

Therefore, for all 1 ≤ k ≤ |S(X )|, the vector (ξ
(n)

i j1
, · · · ,ξ(n)

i jk
) is stochastically dominated component-

wise by the vector (ξ1, · · · ,ξk) where {ξ j} j≥1 is a Poisson process of intensity λ(|S(X )| − k+ 1)/n

on R+ (i.e. for all 0 ≤ t1 ≤ · · · ≤ tk, P(ξ
(n)

i j1
≥ t1, · · · ,ξ(n)

i jk
≥ tk) ≤ P(ξ1 ≥ t1, · · · ,ξk ≥ tk)). In

particular if |S(X )| ≥ (1− δ)n, with 0 < δ < 1/2, then (ξ
(n)

i1
, · · · ,ξ(n)

i⌊nδ⌋) is stochastically dominated

component-wise by the first ⌊nδ⌋ arrival times of a Poisson process of intensity λ(1− 2δ).

Now, let δ > 0 such that λ′ = λ(1− 2δ) > 1/4. We define S(n)u , I (n)u ,R(n)u , as the number of S, I ,R-

particles at time u ≥ 0 in Kn, and I ′u as the number of particles "at risk" at time u in the birth-and-

assassination process with intensity λ′. Let τn = inf{u≥ 0 : S(n)u ≤ (1−δ)n}. Note that if 0≤ u≤ τn

then any I -particle has infected less than ⌊δn⌋ S-particles. From what precedes, we get

S(n)u 1(u≤ τn)≤st n− I ′u.

So that S(n)u ≤st max(n− I ′u, (1−δ)n). In particular, since Nn ≥ supu≥0(n− S(n)u ), we get

Pλ(Nn ≥ δn)≥ Pλ′(lim sup
u→∞

I ′u =∞).

Finally, it is proved in [2] that if λ′ > 1/4 then Pλ′(lim supu→∞ I ′u =∞)> 0.
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